AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 531 to 540 of 4795 articles

Brain MR-only workflow in clinical practice: A comparison among generators for quality assurance and patient positioning.

Journal of applied clinical medical physics
BACKGROUND AND PURPOSE: Routine quality control procedures are still required for sCT based on artificial intelligence (AI) to verify the performance of the generators. The aim of this study was to evaluate three generators based on AI or bulk densit...

An Application of Machine-Learning-Oriented Radiomics Model in Clear Cell Renal Cell Carcinoma (ccRCC) Early Diagnosis.

British journal of hospital medicine (London, England : 2005)
Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of kidney cancer, where early diagnosis is crucial for improving prognosis and treatment outcomes. Radiomics, which utilizes machine learning techniques, presents a promising ap...

Predicting Epidural Hematoma Expansion in Traumatic Brain Injury: A Machine Learning Approach.

The neuroradiology journal
IntroductionTraumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, with epidural hematoma (EDH) being a severe consequence. This study focuses on identifying factors predicting EDH volume changes in TBI patients and de...

CT ventilation images produced by a 3D neural network show improvement over the Jacobian and HU DIR-based methods to predict quantized lung function.

Medical physics
BACKGROUND: Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiothera...

The Pivotal Role of Baseline LDCT for Lung Cancer Screening in the Era of Artificial Intelligence.

Archivos de bronconeumologia
In this narrative review, we address the ongoing challenges of lung cancer (LC) screening using chest low-dose computerized tomography (LDCT) and explore the contributions of artificial intelligence (AI), in overcoming them. We focus on evaluating th...

Generalizability of lesion detection and segmentation when ScaleNAS is trained on a large multi-organ dataset and validated in the liver.

Medical physics
BACKGROUND: Tumor assessment through imaging is crucial for diagnosing and treating cancer. Lesions in the liver, a common site for metastatic disease, are particularly challenging to accurately detect and segment. This labor-intensive task is subjec...

Unsupervised Deep Learning for Synthetic CT Generation from CBCT Images for Proton and Carbon Ion Therapy for Paediatric Patients.

Sensors (Basel, Switzerland)
Image-guided treatment adaptation is a game changer in oncological particle therapy (PT), especially for younger patients. The purpose of this study is to present a cycle generative adversarial network (CycleGAN)-based method for synthetic computed t...

The development of an attention mechanism enhanced deep learning model and its application for body composition assessment with L3 CT images.

Scientific reports
Body composition assessment is very useful for evaluating a patient's status in the clinic, but recognizing, labeling, and calculating the body compositions would be burdensome. This study aims to develop a web-based service that could automate calcu...