AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Treatment Outcome

Showing 191 to 200 of 3069 articles

Clear Filters

An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer.

Nature communications
Multi-modal image analysis using deep learning (DL) lays the foundation for neoadjuvant treatment (NAT) response monitoring. However, existing methods prioritize extracting multi-modal features to enhance predictive performance, with limited consider...

Association of artificial intelligence-based immunoscore with the efficacy of chemoimmunotherapy in patients with advanced non-squamous non-small cell lung cancer: a multicentre retrospective study.

Frontiers in immunology
PURPOSE: Currently, chemoimmunotherapy is effective only in a subset of patients with advanced non-squamous non-small cell lung cancer. Robust biomarkers for predicting the efficacy of chemoimmunotherapy would be useful to identify patients who would...

Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explor...

CT-based deep learning model for predicting the success of extracorporeal shock wave lithotripsy in treating ureteral stones larger than 1 cm.

Urolithiasis
OBJECTIVES: To develop a deep learning (DL) model based on computed tomography (CT) images to predict the success of extracorporeal shock wave lithotripsy (SWL) treatment for patients with ureteral stones larger than 1 cm.

A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma.

Academic radiology
BACKGROUND: This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (...

A Machine Learning-derived Risk Score Improves Prediction of Outcomes After LVAD Implantation: An Analysis of the INTERMACS Database.

Journal of cardiac failure
BACKGROUND: Significant variability in outcomes after left ventricular assist device (LVAD) implantation emphasize the importance of accurately assessing patients' risk before surgery. This study assesses the Machine Learning Assessment of Risk and E...

Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach.

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics
Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. P...

Early prediction of radiotherapy outcomes in pharyngeal cancer using deep learning on baseline [18F]Fluorodeoxyglucose positron emission Tomography/Computed tomography.

European journal of radiology
OBJECTIVES: This study aimed to develop an integrated segmentation-free deep learning (DL) framework to predict multiple aspects of radiotherapy outcome in pharyngeal cancer patients by analyzing pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron...

Development of machine-learning-driven signatures for diagnosing and monitoring therapeutic response in major depressive disorder using integrated immune cell profiles and plasma cytokines.

Theranostics
Diagnosis and treatment efficacy of major depressive disorder (MDD) currently lack stable and reliable biomarkers. Previous research has suggested a potential association between immune cells, cytokines, and the pathophysiology and treatment of MDD....