AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ultrasonography

Showing 181 to 190 of 1231 articles

Clear Filters

Assessing GPT-4 multimodal performance in radiological image analysis.

European radiology
OBJECTIVES: This study aims to assess the performance of a multimodal artificial intelligence (AI) model capable of analyzing both images and textual data (GPT-4V), in interpreting radiological images. It focuses on a range of modalities, anatomical ...

Can deep learning classify cerebral ultrasound images for the detection of brain injury in very preterm infants?

European radiology
OBJECTIVES: Cerebral ultrasound (CUS) is the main imaging screening tool in preterm infants. The aim of this work is to develop deep learning (DL) models that classify normal vs abnormal CUS to serve as a computer-aided detection tool providing timel...

High-level feature-guided attention optimized neural network for neonatal lateral ventricular dilatation prediction.

Medical physics
BACKGROUND: Periventricular-intraventricular hemorrhage can lead to posthemorrhagic ventricular dilatation or even posthemorrhagic hydrocephalus if not detected promptly. Sequential cranial ultrasound scans are typically used for their diagnoses. Non...

Development and testing of a deep learning algorithm to detect lung consolidation among children with pneumonia using hand-held ultrasound.

PloS one
BACKGROUND AND OBJECTIVES: Severe pneumonia is the leading cause of death among young children worldwide, disproportionately impacting children who lack access to advanced diagnostic imaging. Here our objectives were to develop and test the accuracy ...

Artificial neural network prediction of postoperative complications in papillary thyroid microcarcinoma based on preoperative ultrasonographic features.

Journal of clinical ultrasound : JCU
OBJECTIVE: To predict post-thyroidectomy complications in papillary thyroid microcarcinoma (PTMC) patients using a deep learning model based on preoperative ultrasonographic features. This study addresses the global rise in PTMC incidence and the cha...

Ultrasonic Assessment of Liver Fibrosis Using One-Dimensional Convolutional Neural Networks Based on Frequency Spectra of Radiofrequency Signals with Deep Learning Segmentation of Liver Regions in B-Mode Images: A Feasibility Study.

Sensors (Basel, Switzerland)
The early detection of liver fibrosis is of significant importance. Deep learning analysis of ultrasound backscattered radiofrequency (RF) signals is emerging for tissue characterization as the RF signals carry abundant information related to tissue ...

Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast can...

Deep Learning With Ultrasound Images Enhance the Diagnosis of Nonalcoholic Fatty Liver.

Ultrasound in medicine & biology
OBJECTIVE: This research aimed to improve diagnosis of non-alcoholic fatty liver disease (NAFLD) by deep learning with ultrasound Images and reduce the impact of the professional competence and personal bias of the diagnostician.

Multiparametric Ultrasound Imaging of Prostate Cancer Using Deep Neural Networks.

Ultrasound in medicine & biology
OBJECTIVE: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative...