AIMC Topic: Urinary Bladder Neoplasms

Clear Filters Showing 41 to 50 of 397 articles

is a novel marker for bladder cancer prognosis: evidence based on experimental studies, machine learning and single-cell sequencing.

Frontiers in immunology
BACKGROUND: Bladder cancer, a highly fatal disease, poses a significant threat to patients. Positioned at 19q13.2-13.3, LIG1, one of the four DNA ligases in mammalian cells, is frequently deleted in tumour cells of diverse origins. Despite this, the ...

Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status.

PloS one
Smoke exposure is associated with bladder cancer (BC). However, little is known about whether the histologic changes of BC can predict the status of smoke exposure. Given this knowledge gap, the current study investigated the potential association be...

Evaluating artificial intelligence-enhanced digital urine cytology for bladder cancer diagnosis.

Cancer cytopathology
BACKGROUND: This study evaluated the diagnostic effectiveness of the AIxURO platform, an artificial intelligence-based tool, to support urine cytology for bladder cancer management, which typically requires experienced cytopathologists and substantia...

Machine learning-based autophagy-related prognostic signature for personalized risk stratification and therapeutic approaches in bladder cancer.

International immunopharmacology
OBJECTIVE: Bladder cancer (BCa) is a highly lethal urological malignancy characterized by its notable histological heterogeneity. Autophagy has swiftly emerged as a diagnostic and prognostic biomarker in diverse cancer types. Nonetheless, the current...

Optimizing cystoscopy and TURBT: enhanced imaging and artificial intelligence.

Nature reviews. Urology
Diagnostic cystoscopy in combination with transurethral resection of the bladder tumour are the standard for the diagnosis, surgical treatment and surveillance of bladder cancer. The ability to inspect the bladder in its current form stems from a lon...

Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models.

Medical physics
BACKGROUND: Predicting the accurate preoperative staging of bladder cancer (BLCA), which markedly affects treatment decisions and patient outcomes, using traditional clinical parameters is challenging. Nevertheless, emerging studies in radiomics, esp...

Selection of Convolutional Neural Network Model for Bladder Tumor Classification of Cystoscopy Images and Comparison with Humans.

Journal of endourology
An investigation of various convolutional neural network (CNN)-based deep learning algorithms was conducted to select the appropriate artificial intelligence (AI) model for calculating the diagnostic performance of bladder tumor classification on cy...

Non-invasive screening of bladder cancer using digital microfluidics and FLIM technology combined with deep learning.

Journal of biophotonics
Non-invasive screening for bladder cancer is crucial for treatment and postoperative follow-up. This study combines digital microfluidics (DMF) technology with fluorescence lifetime imaging microscopy (FLIM) for urine analysis and introduces a novel ...