AI Medical Compendium Journal:
BMC cancer

Showing 61 to 70 of 162 articles

Estimation of TP53 mutations for endometrial cancer based on diffusion-weighted imaging deep learning and radiomics features.

BMC cancer
OBJECTIVES: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

PRAF2 as a novel biomarker for breast cancer with machine learning and experimentation validation.

BMC cancer
BACKGROUND: Breast cancer (BC) is the most prevalent malignancy in women. Potential therapeutic targets for BC are of great significance. In our previous study, we found that prenylated rab acceptor 1 domain family member 2 (PRAF2) is an oncogene in ...

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC cancer
OBJECTIVE: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained...

Machine learning based identification of an amino acid metabolism related signature for predicting prognosis and immune microenvironment in pancreatic cancer.

BMC cancer
BACKGROUND: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulat...

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC cancer
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain canc...

Construction of a random survival forest model based on a machine learning algorithm to predict early recurrence after hepatectomy for adult hepatocellular carcinoma.

BMC cancer
BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) exhibits a propensity for early recurrence following liver resection, resulting in a bleak prognosis. At present, majority of the predictive models for the early postoperative recurrence of HCC rely...

Combined inflammation-related biomarkers and clinicopathological features for the prognosis of stage II/III colorectal cancer by machine learning.

BMC cancer
BACKGROUND: Inflammation-related biomarkers, such as systemic inflammation score (SIS) and neutrophil-lymphocyte ratio (NLR), are associated with colorectal cancer prognosis. However, the combined role of SIS, NLR, and clinicopathological factors in ...

Prediction of gene expression-based breast cancer proliferation scores from histopathology whole slide images using deep learning.

BMC cancer
BACKGROUND: In breast cancer, several gene expression assays have been developed to provide a more personalised treatment. This study focuses on the prediction of two molecular proliferation signatures: an 11-gene proliferation score and the MKI67 pr...