AI Medical Compendium Journal:
Clinical and translational gastroenterology

Showing 1 to 10 of 23 articles

Machine Learning-Guided Fluid Resuscitation for Acute Pancreatitis Improves Outcomes.

Clinical and translational gastroenterology
INTRODUCTION: Ariel Dynamic Acute Pancreatitis Tracker (ADAPT) is an artificial intelligence tool using mathematical algorithms to predict severity and manage fluid resuscitation needs based on the physiologic parameters of individual patients. Our a...

Development of Time-Aggregated Machine Learning Model for Relapse Prediction in Pediatric Crohn's Disease.

Clinical and translational gastroenterology
INTRODUCTION: Pediatric Crohn's disease (CD) easily progresses to an active disease compared with adult CD, making it important to predict and minimize CD relapses. However, prediction of relapse at various time points (TPs) during pediatric CD remai...

Deep Learning and Automatic Differentiation of Pancreatic Lesions in Endoscopic Ultrasound: A Transatlantic Study.

Clinical and translational gastroenterology
INTRODUCTION: Endoscopic ultrasound (EUS) allows for characterization and biopsy of pancreatic lesions. Pancreatic cystic neoplasms (PCN) include mucinous (M-PCN) and nonmucinous lesions (NM-PCN). Pancreatic ductal adenocarcinoma (P-DAC) is the commo...

Predicting Response to Neuromodulators or Prokinetics in Patients With Suspected Gastroparesis Using Machine Learning: The "BMI, Infectious Prodrome, Delayed GES, and No Diabetes" Model.

Clinical and translational gastroenterology
INTRODUCTION: Pharmacologic therapies for symptoms of gastroparesis (GP) have limited efficacy, and it is difficult to predict which patients will respond. In this study, we implemented a machine learning model to predict the response to prokinetics ...

Machine Learning-Based Prediction Models for Clostridioides difficile Infection: A Systematic Review.

Clinical and translational gastroenterology
INTRODUCTION: Despite research efforts, predicting Clostridioides difficile incidence and its outcomes remains challenging. The aim of this systematic review was to evaluate the performance of machine learning (ML) models in predicting C. difficile i...

The Machine Learning Model for Predicting Inadequate Bowel Preparation Before Colonoscopy: A Multicenter Prospective Study.

Clinical and translational gastroenterology
INTRODUCTION: Colonoscopy is a critical diagnostic tool for colorectal diseases; however, its effectiveness depends on adequate bowel preparation (BP). This study aimed to develop a machine learning predictive model based on Chinese adults for inadeq...

Deep Learning in High-Resolution Anoscopy: Assessing the Impact of Staining and Therapeutic Manipulation on Automated Detection of Anal Cancer Precursors.

Clinical and translational gastroenterology
INTRODUCTION: High-resolution anoscopy (HRA) is the gold standard for detecting anal squamous cell carcinoma (ASCC) precursors. Preliminary studies on the application of artificial intelligence (AI) models to this modality have revealed promising res...

Artificial Intelligence-Assisted Colonoscopy in Real-World Clinical Practice: A Systematic Review and Meta-Analysis.

Clinical and translational gastroenterology
INTRODUCTION: Artificial intelligence (AI) could minimize the operator-dependent variation in colonoscopy quality. Computer-aided detection (CADe) has improved adenoma detection rate (ADR) and adenomas per colonoscopy (APC) in randomized controlled t...

Using Artificial Intelligence to Predict Cirrhosis From Computed Tomography Scans.

Clinical and translational gastroenterology
INTRODUCTION: Undiagnosed cirrhosis remains a significant problem. In this study, we developed and tested an automated liver segmentation tool to predict the presence of cirrhosis in a population of patients with paired liver biopsy and computed tomo...