AI Medical Compendium Journal:
European journal of cancer (Oxford, England : 1990)

Showing 41 to 50 of 58 articles

Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Deep learning convolutional neural networks (CNNs) show great potential for melanoma diagnosis. Melanoma thickness at diagnosis amongĀ others depends on melanoma localisation and subtype (e.g. advanced thickness in acrolentiginous or nodul...

Superior skin cancer classification by the combination of human and artificial intelligence.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: In recent studies, convolutional neural networks (CNNs) outperformed dermatologists in distinguishing dermoscopic images of melanoma and nevi. In these studies, dermatologists and artificial intelligence were considered as opponents. Howe...

Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Recently, convolutional neural networks (CNNs) systematically outperformed dermatologists in distinguishing dermoscopic melanoma and nevi images. However, such a binary classification does not reflect the clinical reality of skin cancer s...

Machine learning defined diagnostic criteria for differentiating pituitary metastasis from autoimmune hypophysitis in patients undergoing immune checkpoint blockade therapy.

European journal of cancer (Oxford, England : 1990)
PURPOSE: New-onset pituitary gland lesions are observed in up to 18% of cancer patients undergoing treatment with immune checkpoint blockers (ICB). We aimed to develop and validate an imaging-based decision-making algorithm for use by the clinician t...

Prediction of melanoma evolution in melanocytic nevi via artificial intelligence: A call for prospective data.

European journal of cancer (Oxford, England : 1990)
Recent research revealed the superiority of artificial intelligence over dermatologists to diagnose melanoma from images. However, 30-50% of all melanomas and more than half of those in young patients evolve from initially benign lesions. Despite its...

Deep neural networks are superior to dermatologists in melanoma image classification.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Melanoma is the most dangerous type of skin cancer but is curable if detected early. Recent publications demonstrated that artificial intelligence is capable in classifying images of benign nevi and melanoma with dermatologist-level preci...