SIGNIFICANCE: Two-dimensional (2-D) fully convolutional neural networks have been shown capable of producing maps of sO2 from 2-D simulated images of simple tissue models. However, their potential to produce accurate estimates in vivo is uncertain as...
SIGNIFICANCE: We introduce an application of machine learning trained on optical phase features of epithelial and mesenchymal cells to grade cancer cells' morphologies, relevant to evaluation of cancer phenotype in screening assays and clinical biops...
We study a problem scenario of super-resolution (SR) algorithms in the context of whole slide imaging (WSI), a popular imaging modality in digital pathology. Instead of just one pair of high- and low-resolution images, which is typically the setup in...
Corneal thickness (CoT) is an important tool in the evaluation process for several disorders and in the assessment of intraocular pressure. We present a method enabling high-precision measurement of CoT based on secondary speckle tracking and process...
We developed machine learning methods to identify fibrolipidic and fibrocalcific A-lines in intravascular optical coherence tomography (IVOCT) images using a comprehensive set of handcrafted features. We incorporated features developed in previous st...
Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have...
For patients undergoing surgical cancer resection of squamous cell carcinoma (SCCa), cancer-free surgical margins are essential for good prognosis. We developed a method to use hyperspectral imaging (HSI), a noncontact optical imaging modality, and c...
Laser speckle contrast imaging (LSCI) enables video rate imaging of blood flow. However, its relation to tissue blood perfusion is nonlinear and depends strongly on exposure time. By contrast, the perfusion estimate from the slower laser Doppler flow...
Diffuse optical tomography (DOT) is a promising noninvasive imaging modality and is capable of providing functional characteristics of biological tissue by quantifying optical parameters. The DOT image reconstruction is ill-posed and ill-conditioned,...
Fast estimation of optical properties from reflectance measurements at two spatial frequencies could pave way for real-time, wide-field and quantitative mapping of vital signs of tissues. We present a machine learning-based approach for estimating op...