AIMC Journal:
Scientific reports

Showing 911 to 920 of 5361 articles

Determining human resource management key indicators and their impact on organizational performance using deep reinforcement learning.

Scientific reports
Performance-related indicators are crucial for evaluating and forecasting performance, enhancing decision-making efficiency, and establishing sustainable growth strategies. They motivate individuals and organizations, increase transparency, and accur...

Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer.

Scientific reports
Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to u...

Stacked CNN-based multichannel attention networks for Alzheimer disease detection.

Scientific reports
Alzheimer's Disease (AD) is a progressive condition of a neurological brain disorder recognized by symptoms such as dementia, memory loss, alterations in behaviour, and impaired reasoning abilities. Recently, many researchers have been working to dev...

Predicting cell properties with AI from 3D imaging flow cytometer data.

Scientific reports
Predicting the properties of tissues or organisms from the genomics data is widely accepted by the medical community. Here we ask a question: can we predict the properties of each individual cell? Single-cell genomics does not work because the RNA se...

An 8-point scale lung ultrasound scoring network fusing local detail and global features.

Scientific reports
Manual lung ultrasound (LUS) scoring is influenced by clinicians' subjective interpretation, leading to potential inconsistencies and misdiagnoses due to varying levels of experience. To improve monitoring of pulmonary ventilation and support early d...

Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models.

Scientific reports
The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding...

Predicting preterm birth using machine learning methods.

Scientific reports
Preterm birth is a significant public health concern, given its correlation with neonatal mortality and morbidity. The aetiology of preterm birth is complex and multifactorial. The objective of this study was to develop and compare machine learning m...

Predicting visual field global and local parameters from OCT measurements using explainable machine learning.

Scientific reports
Glaucoma is characterised by progressive vision loss due to retinal ganglion cell deterioration, leading to gradual visual field (VF) impairment. The standard VF test may be impractical in some cases, where optical coherence tomography (OCT) can offe...

Machine learning modeling for predicting adherence to physical activity guideline.

Scientific reports
This study aims to create predictive models for PA guidelines by using ML and examine the critical determinants influencing adherence to the PA guidelines. 11,638 entries from the National Health and Nutrition Examination Survey were analyzed. Variab...

An explainable and accurate transformer-based deep learning model for wheeze classification utilizing real-world pediatric data.

Scientific reports
Auscultation is a method that involves listening to sounds from the patient's body, mainly using a stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, and it is ideal for diagnosing respiratory diseases an...