OBJECTIVE: This research aimed to improve diagnosis of non-alcoholic fatty liver disease (NAFLD) by deep learning with ultrasound Images and reduce the impact of the professional competence and personal bias of the diagnostician.
OBJECTIVE: A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative...
OBJECTIVE: Myocardial contrast echocardiography (MCE) plays a crucial role in diagnosing ischemia, infarction, masses and other cardiac conditions. In the realm of MCE image analysis, accurate and consistent myocardial segmentation results are essent...
OBJECTIVE: To develop and validate machine learning algorithms to automatically extract the rod length of the magnetically controlled growing rod from ultrasound images (US) in a pilot study.
OBJECTIVE: The proximal isovelocity surface area (PISA) method is a well-established approach for mitral regurgitation (MR) quantification. However, it exhibits high inter-observer variability and inaccuracies in cases of non-hemispherical flow conve...
OBJECTIVE: To develop and validate a machine learning (ML) model based on high-frequency ultrasound (HFUS) images with the aim to identify the functional status of parathyroid glands (PTGs) in secondary hyper-parathyroidism (SHPT) patients.
OBJECTIVE: Bone diseases deteriorate the microstructure of bone tissue. Optical-resolution photoacoustic microscopy (OR-PAM) enables high spatial resolution of imaging bone tissues. However, the spatiotemporal trade-off limits the application of OR-P...
BACKGROUND: Ultrasound image examination has become the preferred choice for diagnosing metabolic dysfunction-associated steatotic liver disease (MASLD) due to its non-invasive nature. Computer-aided diagnosis (CAD) technology can assist doctors in a...
PURPOSE: A novel nomogram incorporating artificial intelligence (AI) and clinical features for enhanced ultrasound prediction of benign and malignant breast masses.
OBJECTIVE: Although there are methods to identify regions of interest (ROIs) from echocardiographic images of myocardial tissue, they are often time-consuming and difficult to create when image quality is poor. Further, while myocardial strain from u...