AIMC Topic: Adenocarcinoma of Lung

Clear Filters Showing 41 to 50 of 179 articles

Integrating multi-omics and machine learning survival frameworks to build a prognostic model based on immune function and cell death patterns in a lung adenocarcinoma cohort.

Frontiers in immunology
INTRODUCTION: The programmed cell death (PCD) plays a key role in the development and progression of lung adenocarcinoma. In addition, immune-related genes also play a crucial role in cancer progression and patient prognosis. However, further studies...

Integrated machine learning survival framework to decipher diverse cell death patterns for predicting prognosis in lung adenocarcinoma.

Genes and immunity
Various forms of programmed cell death (PCD) collectively regulate the occurrence, development and metastasis of tumors. Nevertheless, a comprehensive analysis of the diverse types of PCD in lung adenocarcinoma (LUAD) is currently lacking. The study ...

Deciphering Dormant Cells of Lung Adenocarcinoma: Prognostic Insights from O-glycosylation-Related Tumor Dormancy Genes Using Machine Learning.

International journal of molecular sciences
Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy a...

An end-to-end deep learning method for mass spectrometry data analysis to reveal disease-specific metabolic profiles.

Nature communications
Untargeted metabolomic analysis using mass spectrometry provides comprehensive metabolic profiling, but its medical application faces challenges of complex data processing, high inter-batch variability, and unidentified metabolites. Here, we present ...

Machine-learning and scRNA-Seq-based diagnostic and prognostic models illustrating survival and therapy response of lung adenocarcinoma.

Genes and immunity
Lung cancer is a major cause accounting for cancer-related mortalities, with lung adenocarcinoma (LUAD) being the most prevalent subtype. Given the high clinical and cellular heterogeneities of LUAD, accurate diagnosis and prognosis are crucial to av...

Machine learning and bioinformatics analysis of diagnostic biomarkers associated with the occurrence and development of lung adenocarcinoma.

PeerJ
OBJECTIVE: Lung adenocarcinoma poses a major global health challenge and is a leading cause of cancer-related deaths worldwide. This study is a review of three molecular biomarkers screened by machine learning that are not only important in the occur...

Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model.

BMC cancer
BACKGROUND: The diagnosis of solitary pulmonary nodules has always been a difficult and important point in clinical research, especially granulomatous nodules (GNs) with lobulation and spiculation signs, which are easily misdiagnosed as malignant tum...

Lung Adenocarcinoma Systems Biomarker and Drug Candidates Identified by Machine Learning, Gene Expression Data, and Integrative Bioinformatics Pipeline.

Omics : a journal of integrative biology
Lung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust system...