: Patent ductus arteriosus (PDA) is common in newborns, being associated with high morbidity and mortality. While maternal and neonatal conditions are known contributors, few studies use advanced machine learning (ML) as predictive factors. This stud...
Chronic pain is prevalent and disproportionately impacts adults with a lower quality of life. Although subjective self-reporting is the "gold standard" for pain assessment, tools are needed to objectively monitor and account for inter-individual diff...
BACKGROUND: Undifferentiated arthritis (UA) often develops into rheumatoid arthritis (RA), but predicting disease progression from seronegative UA remains challenging because seronegative RA often does not meet the classification criteria. This study...
OBJECTIVE: The incidence of Type 2 Diabetes Mellitus (T2DM) continues to rise steadily, significantly impacting human health. Early prediction of pre-diabetic risks has emerged as a crucial public health concern in recent years. Machine learning meth...
BACKGROUND: As artificial intelligence (AI) becomes increasingly integral to healthcare, preparing medical and health sciences students to engage with AI technologies is critical.
OBJECTIVE: Bloodstream infection (BSI) is a significant cause of mortality in patients with hematologic malignancies(HMs), particularly amid rising antibiotic resistance. This study aimed to analyze pathogen distribution, drug-resistance patterns and...
Large language model chatbots such as ChatGPT have shown the potential in assisting health professionals in emergency departments (EDs). However, the diagnostic accuracy of newer ChatGPT models remains unclear. This retrospective study evaluated the ...
BACKGROUND: Artificial intelligence (AI)-based systems in medicine like clinical decision support systems (CDSSs) have shown promising results in health care, sometimes outperforming human specialists. However, the integration of AI may challenge med...
BACKGROUND: Machine learning (ML) systems in health care have the potential to enhance decision-making but often fail to address critical issues such as prediction explainability, confidence, and robustness in a context-based and easily interpretable...
OBJECTIVE: To develop a stratified screening tool through machine learning approaches for the Center for Epidemiologic Studies Depression Scale (CES-D-20) while maintaining diagnostic accuracy, addressing the efficiency limitations in large-scale app...