AIMC Topic: Aged, 80 and over

Clear Filters Showing 551 to 560 of 3430 articles

Predictive models for secondary epilepsy in patients with acute ischemic stroke within one year.

eLife
BACKGROUND: Post-stroke epilepsy (PSE) is a critical complication that worsens both prognosis and quality of life in patients with ischemic stroke. An interpretable machine learning model was developed to predict PSE using medical records from four h...

Deep Learning Reconstruction for Enhanced Resolution and Image Quality in Breath-Hold MRCP: A Preliminary Study.

Journal of computer assisted tomography
OBJECTIVE: This preliminary study aims to assess the image quality of enhanced-resolution deep learning reconstruction (ER-DLR) in magnetic resonance cholangiopancreatography (MRCP) and compare it with non-ER-DLR MRCP images.

Application and effectiveness of adaptive AI in elderly healthcare.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: In addressing elderly healthcare issues, cognitive impairment can cause significant disruptions in daily life and may potentially develop into dementia. Thus, finding ways to delay the progression of cognitive impairment is a critical iss...

The Value of Machine Learning Models in Predicting Factors Associated with the Need for Permanent Shunting in Patients with Intracerebral Hemorrhage Requiring Emergency Cerebrospinal Fluid Diversion.

World neurosurgery
OBJECTIVE: To assess the efficacy of machine learning models in identifying factors associated with the need for permanent ventricular shunt placement in patients experiencing intracerebral hemorrhage (ICH) who require emergency cerebrospinal fluid (...

Early Identification of Cognitive Impairment in Community Environments Through Modeling Subtle Inconsistencies in Questionnaire Responses: Machine Learning Model Development and Validation.

JMIR formative research
BACKGROUND: The underdiagnosis of cognitive impairment hinders timely intervention of dementia. Health professionals working in the community play a critical role in the early detection of cognitive impairment, yet still face several challenges such ...

Elevating Patient Care With Deep Learning: High-Resolution Cervical Auscultation Signals for Swallowing Kinematic Analysis in Nasogastric Tube Patients.

IEEE journal of translational engineering in health and medicine
Patients with nasogastric (NG) tubes require careful monitoring due to the potential impact of the tube on their ability to swallow safely. This study aimed to investigate the utility of high-resolution cervical auscultation (HRCA) signals in assessi...

Diagnostic performance of an artificial intelligence model for the detection of pneumothorax at chest X-ray.

Clinical imaging
PURPOSE: Pneumothorax (PTX) is a common clinical urgency, its diagnosis is usually performed on chest radiography (CXR), and it presents a setting where artificial intelligence (AI) methods could find terrain in aiding radiologists in facing increasi...

Explaining deep learning models for age-related gait classification based on acceleration time series.

Computers in biology and medicine
BACKGROUND: Gait analysis holds significant importance in monitoring daily health, particularly among older adults. Advancements in sensor technology enable the capture of movement in real-life environments and generate big data. Machine learning, no...

High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.

Japanese journal of radiology
PURPOSE: The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the ...