AIMC Topic: B7-H1 Antigen

Clear Filters Showing 41 to 50 of 72 articles

Biologically Interpretable Deep Learning To Predict Response to Immunotherapy In Advanced Melanoma Using Mutations and Copy Number Variations.

Journal of immunotherapy (Hagerstown, Md. : 1997)
Only 30-40% of advanced melanoma patients respond effectively to immunotherapy in clinical practice, so it is necessary to accurately identify the response of patients to immunotherapy pre-clinically. Here, we develop KP-NET, a deep learning model th...

The artificial intelligence and machine learning in lung cancer immunotherapy.

Journal of hematology & oncology
Since the past decades, more lung cancer patients have been experiencing lasting benefits from immunotherapy. It is imperative to accurately and intelligently select appropriate patients for immunotherapy or predict the immunotherapy efficacy. In rec...

Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images.

Journal of cancer research and clinical oncology
BACKGROUND: Microsatellite instability (MSI) is one of the essential tumor biomarkers for cancer treatment and prognosis. The presence of more significant PD-L1 expression on the surface of tumor cells in endometrial cancer with MSI suggests that MSI...

Development of an automated combined positive score prediction pipeline using artificial intelligence on multiplexed immunofluorescence images.

Computers in biology and medicine
Immunotherapy targeting immune checkpoint proteins, such as programmed cell death ligand 1 (PD-L1), has shown impressive outcomes in many clinical trials but only 20%-40% of patients benefit from it. Utilizing Combined Positive Score (CPS) to evaluat...

Quantitative Radiological Features and Deep Learning for the Non-Invasive Evaluation of Programmed Death Ligand 1 Expression Levels in Gastric Cancer Patients: A Digital Biopsy Study.

Academic radiology
RATIONALE AND OBJECTIVES: Programmed Death-Ligand 1 (PD-L1) is an important biomarker for patient selection of immunotherapy in gastric cancer (GC). This study aimed to construct and validate a non-invasive virtual biopsy system based on radiological...

Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer.

Nature communications
Programmed death ligand-1 (PD-L1) has been recently adopted for breast cancer as a predictive biomarker for immunotherapies. The cost, time, and variability of PD-L1 quantification by immunohistochemistry (IHC) are a challenge. In contrast, hematoxyl...

Deep learning to estimate durable clinical benefit and prognosis from patients with non-small cell lung cancer treated with PD-1/PD-L1 blockade.

Frontiers in immunology
Different biomarkers based on genomics variants have been used to predict the response of patients treated with PD-1/programmed death receptor 1 ligand (PD-L1) blockade. We aimed to use deep-learning algorithm to estimate clinical benefit in patients...

Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC.

Frontiers in immunology
BACKGROUND: Programmed death-ligand 1 (PD-L1) assessment of lung cancer in immunohistochemical assays was only approved diagnostic biomarker for immunotherapy. But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling a...

Machine learning predicts cancer subtypes and progression from blood immune signatures.

PloS one
Clinical adoption of immune checkpoint inhibitors in cancer management has highlighted the interconnection between carcinogenesis and the immune system. Immune cells are integral to the tumour microenvironment and can influence the outcome of therapi...

Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.

Nature communications
Long noncoding RNAs (lncRNAs) are recently implicated in modifying immunology in colorectal cancer (CRC). Nevertheless, the clinical significance of immune-related lncRNAs remains largely unexplored. In this study, we develope a machine learning-base...