AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Blood Transfusion

Showing 61 to 70 of 89 articles

Clear Filters

Predicting Length of Stay of Coronary Artery Bypass Grafting Patients Using Machine Learning.

The Journal of surgical research
BACKGROUND: There is a growing need to identify which bits of information are most valuable for healthcare providers. The aim of this study was to search for the highest impact variables in predicting postsurgery length of stay (LOS) for patients who...

Development of a field artificial intelligence triage tool: Confidence in the prediction of shock, transfusion, and definitive surgical therapy in patients with truncal gunshot wounds.

The journal of trauma and acute care surgery
BACKGROUND: In-field triage tools for trauma patients are limited by availability of information, linear risk classification, and a lack of confidence reporting. We therefore set out to develop and test a machine learning algorithm that can overcome ...

Artificial intelligence-based prediction of transfusion in the intensive care unit in patients with gastrointestinal bleeding.

BMJ health & care informatics
OBJECTIVE: Gastrointestinal (GI) bleeding commonly requires intensive care unit (ICU) in cases of potentialhaemodynamiccompromise or likely urgent intervention. However, manypatientsadmitted to the ICU stop bleeding and do not require further interve...

Machine Learning Applied to Registry Data: Development of a Patient-Specific Prediction Model for Blood Transfusion Requirements During Craniofacial Surgery Using the Pediatric Craniofacial Perioperative Registry Dataset.

Anesthesia and analgesia
BACKGROUND: Craniosynostosis is the premature fusion of ≥1 cranial sutures and often requires surgical intervention. Surgery may involve extensive osteotomies, which can lead to substantial blood loss. Currently, there are no consensus recommendation...

Machine learning-based prediction of transfusion.

Transfusion
BACKGROUND: The ability to predict transfusions arising during hospital admission might enable economized blood supply management and might furthermore increase patient safety by ensuring a sufficient stock of red blood cells (RBCs) for a specific pa...

Validating clinical threshold values for a dashboard view of the compensatory reserve measurement for hemorrhage detection.

The journal of trauma and acute care surgery
BACKGROUND: Compensatory reserve measurement (CRM) is a novel noninvasive monitoring technology designed to assess physiologic reserve using feature interrogation of arterial pulse waveforms. This study was conducted to validate clinically relevant C...

Designing an optimal inventory management model for the blood supply chain: Synthesis of reusable simulation and neural network.

Medicine
Blood supply managers in the blood supply chain have always sought to create enough reserves to increase access to different blood products and reduce the mortality rate resulting from expired blood. Managers' adequate and timely response to their cu...

Transfusion after total knee arthroplasty can be predicted using the machine learning algorithm.

Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
PURPOSE: A blood transfusion after total knee arthroplasty (TKA) is associated with an increase in complication and infection rates. However, no studies have been conducted to predict transfusion after TKA using a machine learning algorithm. The purp...