Diffusion MRI (dMRI) is a powerful technique for investigating tissue microstructure properties. However, advanced dMRI models are typically complex and nonlinear, requiring a large number of acquisitions in the q-space. Deep learning techniques, spe...
Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and v...
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Mar 19, 2025
Multiple imaging modalities and specific proteins in the cerebrospinal fluid, providing a comprehensive understanding of neurodegenerative disorders, have been widely used for computer-aided diagnosis of Alzheimer's disease (AD). Given the proven eff...
BACKGROUND: Neurological disorders, particularly Parkinson's Disease (PD), are serious and progressive conditions that significantly impact patients' motor functions and overall quality of life. Accurate and timely diagnosis is still crucial, but it ...
High-resolution spatial imaging is transforming our understanding of foundational biology. Spatial metabolomics is an emerging field that enables the dissection of the complex metabolic landscape and heterogeneity from a thin tissue section. Currentl...
Detection of Alzheimer's Disease (AD) is critical for successful diagnosis and treatment, involving the common practice of screening for Mild Cognitive Impairment (MCI). However, the progressive nature of AD makes it challenging to identify its causa...
Viewing artificial objects and images that are designed to appear human can elicit a sense of unease, referred to as the 'uncanny valley' effect. Here we investigate neural correlates of the uncanny valley, using still images of androids (robots desi...
PURPOSE: Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based li...
Self-supervised learning (SSL) has been proposed to alleviate neural networks' reliance on annotated data and to improve downstream tasks' performance, which has obtained substantial success in several volumetric medical image segmentation tasks. How...
Brain functional connectivity analysis is important for understanding brain development and brain disorders. Recent studies have suggested that the variations of functional connectivity among multiple subnetworks are closely related to the developmen...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.