AIMC Topic: Carcinoma, Non-Small-Cell Lung

Clear Filters Showing 91 to 100 of 354 articles

GWO+RuleFit: rule-based explainable machine-learning combined with heuristics to predict mid-treatment FDG PET response to chemoradiation for locally advanced non-small cell lung cancer.

Physics in medicine and biology
Vital rules learned from fluorodeoxyglucose positron emission tomography (FDG-PET) radiomics of tumor subregional response can provide clinical decision support for precise treatment adaptation. We combined a rule-based machine learning (ML) model (R...

Predicting Survival in Patients with Advanced NSCLC Treated with Atezolizumab Using Pre- and on-Treatment Prognostic Biomarkers.

Clinical pharmacology and therapeutics
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment...

Enhanced deep learning model for precise nodule localization and recurrence risk prediction following curative-intent surgery for lung cancer.

PloS one
PURPOSE: Radical surgery is the primary treatment for early-stage resectable lung cancer, yet recurrence after curative surgery is not uncommon. Identifying patients at high risk of recurrence using preoperative computed tomography (CT) images could ...

Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study.

Scientific reports
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included ...

Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients.

Cell reports methods
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. ...

Combined expert-in-the-loop-random forest multiclass segmentation U-net based artificial intelligence model: evaluation of non-small cell lung cancer in fibrotic and non-fibrotic microenvironments.

Journal of translational medicine
BACKGROUND: The tumor microenvironment (TME) plays a key role in lung cancer initiation, proliferation, invasion, and metastasis. Artificial intelligence (AI) methods could potentially accelerate TME analysis. The aims of this study were to (1) asses...

Machine learning identifies prognostic subtypes of the tumor microenvironment of NSCLC.

Scientific reports
The tumor microenvironment (TME) plays a fundamental role in tumorigenesis, tumor progression, and anti-cancer immunity potential of emerging cancer therapeutics. Understanding inter-patient TME heterogeneity, however, remains a challenge to efficien...

A deep learning approach for overall survival prediction in lung cancer with missing values.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: In the field of lung cancer research, particularly in the analysis of overall survival (OS), artificial intelligence (AI) serves crucial roles with specific aims. Given the prevalent issue of missing data in the medical doma...

Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction.

World journal of surgical oncology
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...

Histological Subtype Classification of Non-Small Cell Lung Cancer with Radiomics and 3D Convolutional Neural Networks.

Journal of imaging informatics in medicine
Non-small cell lung carcinoma (NSCLC) is the most common type of pulmonary cancer, one of the deadliest malignant tumors worldwide. Given the increased emphasis on the precise management of lung cancer, identifying various subtypes of NSCLC has becom...