Vital rules learned from fluorodeoxyglucose positron emission tomography (FDG-PET) radiomics of tumor subregional response can provide clinical decision support for precise treatment adaptation. We combined a rule-based machine learning (ML) model (R...
Clinical pharmacology and therapeutics
Jul 12, 2024
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment...
PURPOSE: Radical surgery is the primary treatment for early-stage resectable lung cancer, yet recurrence after curative surgery is not uncommon. Identifying patients at high risk of recurrence using preoperative computed tomography (CT) images could ...
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included ...
Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. ...
BACKGROUND: The tumor microenvironment (TME) plays a key role in lung cancer initiation, proliferation, invasion, and metastasis. Artificial intelligence (AI) methods could potentially accelerate TME analysis. The aims of this study were to (1) asses...
The tumor microenvironment (TME) plays a fundamental role in tumorigenesis, tumor progression, and anti-cancer immunity potential of emerging cancer therapeutics. Understanding inter-patient TME heterogeneity, however, remains a challenge to efficien...
Computer methods and programs in biomedicine
Jun 28, 2024
BACKGROUND AND OBJECTIVE: In the field of lung cancer research, particularly in the analysis of overall survival (OS), artificial intelligence (AI) serves crucial roles with specific aims. Given the prevalent issue of missing data in the medical doma...
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...
Journal of imaging informatics in medicine
Jun 11, 2024
Non-small cell lung carcinoma (NSCLC) is the most common type of pulmonary cancer, one of the deadliest malignant tumors worldwide. Given the increased emphasis on the precise management of lung cancer, identifying various subtypes of NSCLC has becom...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.