AIMC Topic: Clinical Trials, Phase III as Topic

Clear Filters Showing 1 to 10 of 21 articles

Predicting Survival in Patients with Advanced NSCLC Treated with Atezolizumab Using Pre- and on-Treatment Prognostic Biomarkers.

Clinical pharmacology and therapeutics
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment...

Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology
PURPOSE: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients ...

External Validation of a Digital Pathology-based Multimodal Artificial Intelligence Architecture in the NRG/RTOG 9902 Phase 3 Trial.

European urology oncology
BACKGROUND: Accurate risk stratification is critical to guide management decisions in localized prostate cancer (PCa). Previously, we had developed and validated a multimodal artificial intelligence (MMAI) model generated from digital histopathology ...

Application of statistical machine learning in biomarker selection.

Scientific reports
In the recent JAVELIN Bladder 100 phase 3 trial, avelumab plus best supportive care significantly prolonged overall survival relative to best supportive care alone as first-line maintenance therapy following first-line platinum-based chemotherapy in ...

Prediction of clinical trial enrollment rates.

PloS one
Clinical trials represent a critical milestone of translational and clinical sciences. However, poor recruitment to clinical trials has been a long standing problem affecting institutions all over the world. One way to reduce the cost incurred by ins...

A Simulation Study to Compare the Predictive Performance of Survival Neural Networks with Cox Models for Clinical Trial Data.

Computational and mathematical methods in medicine
BACKGROUND: Studies focusing on prediction models are widespread in medicine. There is a trend in applying machine learning (ML) by medical researchers and clinicians. Over the years, multiple ML algorithms have been adapted to censored data. However...