This study aims to present a novel deep learning algorithm for a sliding shock advisory decision during cardiopulmonary resuscitation (CPR) and its performance evaluation as a function of the cumulative hands-off time. We retrospectively used 13,570 ...
OBJECTIVES: Extracorporeal cardiopulmonary resuscitation (ECPR) has been shown to improve neurologically favorable survival in patients with refractory out-of-hospital cardiac arrest (OHCA) caused by shockable rhythms. Further refinement of patient s...
Cardiopulmonary resuscitation (CPR) is a crucial life-saving technique commonly administered to individuals experiencing cardiac arrest. Among the important aspects of CPR is ensuring the correct airway position of the patient, which is typically mon...
Computer methods and programs in biomedicine
38924799
BACKGROUND: Coronary perfusion pressure (CPP) indicates spontaneous return of circulation and is recommended for high-quality cardiopulmonary resuscitation (CPR). This study aimed to investigate a method for non-invasive estimation of CPP using elect...
AIM OF THE STUDY: This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Addit...
AIM: This study introduces RealCAC-Net, an artificial intelligence (AI) system, to quantify carotid artery compressibility (CAC) and determine the return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation.