AIMC Topic: Datasets as Topic

Clear Filters Showing 11 to 20 of 1087 articles

A Novel Fusion Framework Combining Graph Embedding Class-Based Convolutional Recurrent Attention Network with Brown Bear Optimization Algorithm for EEG-Based Parkinson's Disease Recognition.

Journal of molecular neuroscience : MN
Parkinson's disease recognition (PDR) involves identifying Parkinson's disease using clinical evaluations, imaging studies, and biomarkers, focusing on early symptoms like tremors, rigidity, and bradykinesia to facilitate timely treatment. However, d...

Automatic Segmentation of Bone Graft in Maxillary Sinus via Distance Constrained Network Guided by Prior Anatomical Knowledge.

IEEE journal of biomedical and health informatics
Maxillary Sinus Lifting is a crucial surgical procedure for addressing insufficient alveolar bone mass andsevere resorption in dental implant therapy. To accurately analyze the geometry changesof the bone graft (BG) in the maxillary sinus (MS), it is...

Rethinking model prototyping through the MedMNIST+ dataset collection.

Scientific reports
The integration of deep learning based systems in clinical practice is often impeded by challenges rooted in limited and heterogeneous medical datasets. In addition, the field has increasingly prioritized marginal performance gains on a few, narrowly...

Enhanced U-Net for Infant Brain MRI Segmentation: A (2+1)D Convolutional Approach.

Sensors (Basel, Switzerland)
BACKGROUND: Infant brain tissue segmentation from MRI data is a critical task in medical imaging, particularly challenging due to the evolving nature of tissue contrasts in the early months of life. The difficulty increases as gray matter (GM) and wh...

FusionNet: Dual input feature fusion network with ensemble based filter feature selection for enhanced brain tumor classification.

Brain research
Brain tumors pose a significant threat to human health, require a precise and quick diagnosis for effective treatment. However, achieving high diagnostic accuracy with traditional methods remains challenging due to the complex nature of brain tumors....

Importance of dataset design in developing robust U-Net models for label-free cell morphology evaluation.

Journal of bioscience and bioengineering
Advances in regenerative medicine highlighted the need for label-free cell image analysis to replace conventional microscopic observation for non-invasive cell quality evaluation. Image-based evaluation provides an efficient, quantitative, and automa...

A Deep Reinforcement Learning-Based Feature Selection Method for Invasive Disease Event Prediction Using Imbalanced Follow-Up Data.

IEEE journal of biomedical and health informatics
The machine learning-based model is a promising paradigm for predicting invasive disease events (iDEs) in breast cancer. Feature selection (FS) is an essential preprocessing technique employed to identify the pertinent features for the prediction mod...

Generative and contrastive graph representation learning with message passing.

Neural networks : the official journal of the International Neural Network Society
Self-supervised graph representation learning (SSGRL) has emerged as a promising approach for graph embeddings because it does not rely on manual labels. SSGRL methods are generally divided into generative and contrastive approaches. Generative metho...

The Data Artifacts Glossary: a community-based repository for bias on health datasets.

Journal of biomedical science
BACKGROUND: The deployment of Artificial Intelligence (AI) in healthcare has the potential to transform patient care through improved diagnostics, personalized treatment plans, and more efficient resource management. However, the effectiveness and fa...