AIMC Topic: Decision Support Techniques

Clear Filters Showing 1 to 10 of 436 articles

Evaluation of antiarrhythmia drug through QSPR modeling and multi criteria decision analysis.

Scientific reports
This study explores how topological indices (TIs), which are mathematical descriptors of a drug's molecular structure, can support to predict vital properties and biological activities. This understanding is a key for more effective drug design. We f...

The Impact of Machine Learning Mortality Risk Prediction on Clinician Prognostic Accuracy and Decision Support: A Randomized Vignette Study.

Medical decision making : an international journal of the Society for Medical Decision Making
BackgroundMachine learning (ML) algorithms may improve the prognosis for serious illnesses such as cancer, identifying patients who may benefit from earlier palliative care (PC) or advance care planning (ACP). We evaluated the impact of various prese...

Prediction of three-year all-cause mortality in patients with heart failure and atrial fibrillation using the CatBoost model.

BMC cardiovascular disorders
BACKGROUND: Heart failure and atrial fibrillation (HF-AF) frequently coexist, resulting in complex interactions that substantially elevate mortality risk. This study aimed to develop and validate a machine learning (ML) model predicting the 3-year al...

Predicting carotid atherosclerosis in latent autoimmune diabetes in adult patients using machine learning models: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Latent autoimmune diabetes in adults (LADA) is a slowly progressing form of diabetes with autoimmune origins. Patients with LADA are at an elevated risk of developing cardiovascular diseases, including carotid atherosclerosis. While machi...

Predicting mortality risk following major lower extremity amputation using machine learning.

Journal of vascular surgery
OBJECTIVE: Major lower extremity amputation for advanced vascular disease involves significant perioperative risks. Although outcome prediction tools could aid in clinical decision-making, they remain limited. To address this, we developed machine le...

Machine-learning model for predicting left atrial thrombus in patients with paroxysmal atrial fibrillation.

BMC cardiovascular disorders
OBJECTIVE: Left atrial thrombus (LAT) poses a significant risk for stroke and other thromboembolic complication in patients with atrial fibrillation (AF). This study aimed to evaluate the incidence and predictors of LAT in patients with paroxysmal AF...

Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis.

BMC cardiovascular disorders
INTRODUCTION: Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease (CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) models in predicting differ...

Using fuzzy decision support to create a positive mental health environment for preschoolers.

Scientific reports
The preschool period is a crucial time for behavioural and social-emotional development and the cultivation of mental well-being. Preschoolers may be affected by various traumatic problems. During this process, preschoolers may develop hazardous beha...