AIMC Topic: Decision Support Techniques

Clear Filters Showing 11 to 20 of 429 articles

Optimization of Decision Support Technology for Offshore Oil Condition Monitoring with Carbon Neutrality as the Goal in the Enterprise Development Process.

PloS one
This study aims to explore the integration of the Faster R-CNN (Region-based Convolutional Neural Network) algorithm from deep learning into the MobileNet v2 architecture, within the context of enterprises aiming for carbon neutrality in their develo...

Optimizing heart disease diagnosis with advanced machine learning models: a comparison of predictive performance.

BMC cardiovascular disorders
Cardiovascular disease is the leading cause of mortality globally, necessitating precise and prompt predictive instruments to enhance patient outcomes. In recent years, machine learning methodologies have demonstrated significant potential in enhanci...

A decision-making framework for evaluating medical equipment suppliers under uncertainty.

Scientific reports
The procurement of medical equipment is a critical concern for healthcare organizations striving to deliver comprehensive patient care. Thus, the procurement process, including performance evaluation and selection of medical equipment suppliers, pose...

Automated Identification of Stroke Thrombolysis Contraindications from Synthetic Clinical Notes: A Proof-of-Concept Study.

Cerebrovascular diseases extra
INTRODUCTION: Timely thrombolytic therapy improves outcomes in acute ischemic stroke. Manual chart review to screen for thrombolysis contraindications may be time-consuming and prone to errors. We developed and tested a large language model (LLM)-bas...

Cost-effectiveness of novel diagnostic tools for idiopathic pulmonary fibrosis in the United States.

BMC health services research
OBJECTIVES: Novel non-invasive machine learning algorithms may improve accuracy and reduce the need for biopsy when diagnosing idiopathic pulmonary fibrosis (IPF). We conducted a cost-effectiveness analysis of diagnostic strategies for IPF.

Risk of bias assessment of post-stroke mortality machine learning predictive models: Systematic review.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke is a major cause of mortality and permanent disability worldwide. Precise prediction of post-stroke mortality is essential for guiding treatment decisions and rehabilitation planning. The ability of Machine learning models to proce...

Do Treatment Choices by Artificial Intelligence Correspond to Reality? Retrospective Comparative Research with Necrotizing Enterocolitis as a Use Case.

Medical decision making : an international journal of the Society for Medical Decision Making
BackgroundIn cases of surgical necrotizing enterocolitis (NEC), the choice between laparotomy (LAP) or comfort care (CC) presents a complex, ethical dilemma. A behavioral artificial intelligence technology (BAIT) decision aid was trained on expert kn...

Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could i...