AIMC Topic: Deep Learning

Clear Filters Showing 1131 to 1140 of 26421 articles

Optimized attention-enhanced U-Net for autism detection and region localization in MRI.

Psychiatry research. Neuroimaging
Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects a child's cognitive and social skills, often diagnosed only after symptoms appear around age 2. Leveraging MRI for early ASD detection can improve intervention outcomes. Th...

Optimizing fractionation schedules for de-escalation radiotherapy in head and neck cancers using deep reinforcement learning.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: Patients with locally-advanced head and neck squamous cell carcinomas (HNSCCs), particularly those related to human papillomavirus (HPV), often achieve good locoregional control (LRC), yet they suffer significant toxicities from standard che...

A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI.

Medical image analysis
Diffusion MRI (dMRI) is the primary imaging modality used to study brain microstructure in vivo. Reliable and computationally efficient parameter inference for common dMRI biophysical models is a challenging inverse problem, due to factors such as va...

Automatic pre-screening of outdoor airborne microplastics in micrographs using deep learning.

Environmental pollution (Barking, Essex : 1987)
Airborne microplastics (AMPs) are prevalent in both indoor and outdoor environments, posing potential health risks to humans. Automating the process of identifying potential particles in micrographs can significantly enhance the research and monitori...

Explainable artificial intelligence to quantify adenoid hypertrophy-related upper airway obstruction using 3D Shape Analysis.

Journal of dentistry
OBJECTIVES: To develop and validate an explainable Artificial Intelligence (AI) model for classifying and quantifying upper airway obstruction related to adenoid hypertrophy using three-dimensional (3D) shape analysis of cone-beam computed tomography...

Enhanced dose prediction for head and neck cancer artificial intelligence-driven radiotherapy based on transfer learning with limited training data.

Journal of applied clinical medical physics
PURPOSE: Training deep learning dose prediction models for the latest cutting-edge radiotherapy techniques, such as AI-based nodal radiotherapy (AINRT) and Daily Adaptive AI-based nodal radiotherapy (DA-AINRT), is challenging due to limited data. Thi...

BERT-AmPEP60: A BERT-Based Transfer Learning Approach to Predict the Minimum Inhibitory Concentrations of Antimicrobial Peptides for and .

Journal of chemical information and modeling
Antimicrobial peptides (AMPs) are a promising alternative for combating bacterial drug resistance. While current computer prediction models excel at binary classification of AMPs based on sequences, there is a lack of regression methods to accurately...

Deep-Learning Potential Molecular Dynamics Study on Nanopolycrystalline Al-Er Alloys: Effects of Er Concentration, Grain Boundary Segregation, and Grain Size on Plastic Deformation.

Journal of chemical information and modeling
Understanding the tensile mechanical properties of Al-Er alloys at the atomic scale is essential, and molecular dynamics (MD) simulations offer valuable insights. However, these simulations are constrained by the unavailability of suitable interatomi...

Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation.

Journal of chemical information and modeling
Ischemic stroke's complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with exp...

Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning.

Sensors (Basel, Switzerland)
Imaging technologies based on vector optical fields hold significant potential in the biomedical field, particularly for non-invasive scattering imaging of anisotropic biological tissues. However, the dynamic and anisotropic nature of biological tiss...