AIMC Topic: Deep Learning

Clear Filters Showing 1981 to 1990 of 26532 articles

Prediction of pink esthetic score using deep learning: A proof of concept.

Journal of dentistry
OBJECTIVES: This study aimed to develop a deep learning (DL) model for the predictive esthetic evaluation of single-implant treatments in the esthetic zone.

Automating the optimization of proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning.

Medical physics
BACKGROUND: Proton pencil beam scanning (PBS) treatment planning for head and neck (H&N) cancers is a time-consuming and experience-demanding task where a large number of potentially conflicting planning objectives are involved. Deep reinforcement le...

Simultaneous Isotropic Omnidirectional Hypersensitive Strain Sensing and Deep Learning-Assisted Direction Recognition in a Biomimetic Stretchable Device.

Advanced materials (Deerfield Beach, Fla.)
Omnidirectional strain sensing and direction recognition ability are features of the human tactile sense, essential to address the intricate and dynamic requirements of real-world applications. Most of the current strain sensors work by converting un...

Automated Euler number of the alveolar capillary network based on deep learning segmentation with verification by stereological methods.

Journal of microscopy
Diseases like bronchopulmonary dysplasia (BPD) affect the development of the pulmonary vasculature, including the alveolar capillary network (ACN). Since pulmonary development is highly dependent on angiogenesis and microvascular maturation, ACN inve...

Protocol for functional screening of CFTR-targeted genetic therapies in patient-derived organoids using DETECTOR deep-learning-based analysis.

STAR protocols
Here, we present a protocol for the rapid functional screening of gene editing and addition strategies in patient-derived organoids using the deep-learning-based tool DETECTOR (detection of targeted editing of cystic fibrosis transmembrane conductanc...

Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks (part II).

Journal of the neurological sciences
Neural networks (NNs) possess the capability to learn complex data relationships, recognize inherent patterns by emulating human brain functions, and generate predictions based on novel data. We conducted deep learning utilizing an NN to differentiat...

The potential use of deep learning in performing autocorrection of setup errors in patients receiving radiotherapy.

Radiography (London, England : 1995)
INTRODUCTION: Modern radiotherapy practice relies on multiple approaches for verification of patient positioning. All of these techniques require experienced radiotherapists who understand the anatomical landmarks and the limitations of the used veri...

A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities.

Computers in biology and medicine
Feature extraction in ML plays a crucial role in transforming raw data into a more meaningful and interpretable representation. In this study, we thoroughly examined a range of feature extraction techniques and assessed their impact on the binary cla...

Unveiling encephalopathy signatures: A deep learning approach with locality-preserving features and hybrid neural network for EEG analysis.

Neuroscience letters
EEG signals exhibit spatio-temporal characteristics due to the neural activity dispersion in space over the brain and the dynamic temporal patterns of electrical activity in neurons. This study tries to effectively utilize the spatio-temporal nature ...

Integrating deep learning algorithms for forecasting evapotranspiration and assessing crop water stress in agricultural water management.

Journal of environmental management
The increasing impacts of climate change on global agriculture necessitate the development of advanced predictive models for efficient water management in crop fields. This study aims to enhance the forecasting of evapotranspiration (ET), potential e...