Background and Purpose- Computed tomography perfusion (CTP) is a useful tool in the evaluation of acute ischemic stroke, where it can provide an estimate of the ischemic core and the ischemic penumbra. The optimal CTP parameters to identify the ische...
PURPOSE: To predict the neoadjuvant chemoradiation therapy (CRT) response in patients with locally advanced rectal cancer (LARC) using radiomics and deep learning based on pre-treatment MRI and a mid-radiation follow-up MRI taken 3-4 weeks after the ...
Journal of magnetic resonance imaging : JMRI
Apr 22, 2019
BACKGROUND: Low signal-to-noise ratio (SNR) has been a major limiting factor for the application of higher-resolution diffusion-weighted imaging (DWI). Most of the conventional denoising models suffer from the drawbacks of shallow feature extraction ...
Missing data is a common problem in longitudinal studies due to subject dropouts and failed scans. We present a graph-based convolutional neural network to predict missing diffusion MRI data. In particular, we consider the relationships between sampl...
This paper introduces a deep-learning based computer-aided diagnostic (CAD) system for the early detection of acute renal transplant rejection. For noninvasive detection of kidney rejection at an early stage, the proposed CAD system is based on the f...
The ability to evaluate empirical diffusion MRI acquisitions for quality and to correct the resulting imaging metrics allows for improved inference and increased replicability. Previous work has shown promise for estimation of bias and variance of ge...
In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature...
PURPOSE: The purpose of this study was to develop a neural network that accurately performs diffusion tensor imaging (DTI) reconstruction from highly accelerated scans.
RATIONALE AND OBJECTIVE: Uterine leiomyomas with high signal intensity on T2-weighted imaging (T2WI) can be difficult to distinguish from sarcomas. This study assessed the feasibility of using machine learning to differentiate uterine sarcomas from l...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.