AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diffusion Magnetic Resonance Imaging

Showing 291 to 300 of 318 articles

Clear Filters

Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.

Medical image analysis
Many automatic segmentation methods are based on supervised machine learning. Such methods have proven to perform well, on the condition that they are trained on a sufficiently large manually labeled training set that is representative of the images ...

Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging.

Osteoarthritis and cartilage
OBJECTIVE: The purpose of this study is to evaluate the ability of machine learning to discriminate between magnetic resonance images (MRI) of normal and pathological human articular cartilage obtained under standard clinical conditions.

Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.

Journal of computer assisted tomography
OBJECTIVE: The aim of this study was to evaluate various radiomics-based machine learning classification models using the apparent diffusion coefficient (ADC) and cerebral blood flow (CBF) maps for differentiating between low-grade gliomas (LGGs) and...

Automated Imaging Differentiation for Parkinsonism.

JAMA neurology
IMPORTANCE: Magnetic resonance imaging (MRI) paired with appropriate disease-specific machine learning holds promise for the clinical differentiation of Parkinson disease (PD), multiple system atrophy (MSA) parkinsonian variant, and progressive supra...

TractCloud-FOV: Deep Learning-Based Robust Tractography Parcellation in Diffusion MRI With Incomplete Field of View.

Human brain mapping
Tractography parcellation classifies streamlines reconstructed from diffusion MRI into anatomically defined fiber tracts for clinical and research applications. However, clinical scans often have incomplete fields of view (FOV) where brain regions ar...

Machine Learning Models Based on Stretched-Exponential Diffusion Weighted Imaging to Predict TROP2 Expression in Nude Mouse Breast Cancer Models.

Discovery medicine
BACKGROUND: Trophoblast cell surface antigen 2 (TROP2) is a promising target for various cancers, including breast cancer. The development of noninvasive techniques for assessing TROP2 expression in tumors holds considerable importance. This study ai...

Deep Learning Applied to Diffusion-weighted Imaging for Differentiating Malignant from Benign Breast Tumors without Lesion Segmentation.

Radiology. Artificial intelligence
Purpose To evaluate and compare the performance of different artificial intelligence (AI) models in differentiating between benign and malignant breast tumors at diffusion-weighted imaging (DWI), including comparison with radiologist assessments. Mat...

Diffusion-weighted MRI precisely predicts telomerase reverse transcriptase promoter mutation status in World Health Organization grade IV gliomas using a residual convolutional neural network.

The British journal of radiology
OBJECTIVES: Telomerase reverse transcriptase promoter (pTERT) mutation status plays a key role in making decisions and predicting prognoses for patients with World Health Organization (WHO) grade IV glioma. This study was conducted to assess the valu...

Deep Learning-based Unsupervised Domain Adaptation via a Unified Model for Prostate Lesion Detection Using Multisite Biparametric MRI Datasets.

Radiology. Artificial intelligence
Purpose To determine whether the unsupervised domain adaptation (UDA) method with generated images improves the performance of a supervised learning (SL) model for prostate cancer (PCa) detection using multisite biparametric (bp) MRI datasets. Materi...

Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma.

Radiology. Artificial intelligence
Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans in patients with glioblastoma and to predict overall survival (OS) and progression-free su...