AIMC Topic: Early Diagnosis

Clear Filters Showing 11 to 20 of 457 articles

Diagnosis of early idiopathic pulmonary fibrosis: current status and future perspective.

Respiratory research
The standard approach to diagnosing idiopathic pulmonary fibrosis (IPF) includes identifying the usual interstitial pneumonia (UIP) pattern via high resolution computed tomography (HRCT) or lung biopsy and excluding known causes of interstitial lung ...

Proteomic-based biomarker discovery reveals panels of diagnostic biomarkers for early identification of heart failure subtypes.

Journal of translational medicine
BACKGROUND: Limited access to echocardiography can delay the diagnosis of suspected heart failure (HF), which in turn postpones the initiation of optimal guideline-directed medical therapy. Although natriuretic peptides like B-type natriuretic peptid...

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Scientific reports
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the ...

Advancement in early diagnosis of polycystic ovary syndrome: biomarker-driven innovative diagnostic sensor.

Mikrochimica acta
Polycystic ovary syndrome (PCOS) is a heterogeneous multifactorial endocrine disorder that affects one in five women around the globe. The pathology suggests a strong polygenic and epigenetic correlation, along with hormonal and metabolic dysfunction...

A hybrid deep learning framework for early detection of diabetic retinopathy using retinal fundus images.

Scientific reports
Recent advancements in deep learning have significantly impacted medical image processing domain, enabling sophisticated and accurate diagnostic tools. This paper presents a novel hybrid deep learning framework that combines convolutional neural netw...

Development and external validation of a machine learning model for cardiac valve calcification early screening in dialysis patients: a multicenter study.

Renal failure
BACKGROUND: Cardiac valve calcification (CVC) is common in dialysis patients and associated with increased cardiovascular risk. However, early screening has been limited by cost concerns. This study aimed to develop and validate a machine learning mo...

A Multimodal Approach for Early Identification of Mild Cognitive Impairment and Alzheimer's Disease With Fusion Network Using Eye Movements and Speech.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Detecting Alzheimer's disease (AD) in its earliest stages, particularly during an onset of Mild Cognitive Impairment (MCI), remains challenging due to the overlap of initial symptoms with normal aging processes. Given that no cure exists and current ...

Machine Learning-Based Diagnostic Prediction Model Using T1-Weighted Striatal Magnetic Resonance Imaging for Early-Stage Parkinson's Disease Detection.

Academic radiology
RATIONALE AND OBJECTIVES: Diagnosing Parkinson's disease (PD) typically relies on clinical evaluations, often detecting it in advanced stages. Recently, artificial intelligence has increasingly been applied to imaging for neurodegenerative disorders....

Early prediction of sepsis associated encephalopathy in elderly ICU patients using machine learning models: a retrospective study based on the MIMIC-IV database.

Frontiers in cellular and infection microbiology
BACKGROUND: Sepsis associated encephalopathy (SAE) is prevalent among elderly patients in the ICU and significantly affects patient prognosis. Due to the symptom similarity with other neurological disorders and the absence of specific biomarkers, ear...

Combining machine learning and dynamic system techniques to early detection of respiratory outbreaks in routinely collected primary healthcare records.

BMC medical research methodology
BACKGROUND: Methods that enable early outbreak detection represent powerful tools in epidemiological surveillance, allowing adequate planning and timely response to disease surges. Syndromic surveillance data collected from primary healthcare encount...