AIMC Topic: Fluorodeoxyglucose F18

Clear Filters Showing 11 to 20 of 219 articles

Impact of [F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role.

Seminars in nuclear medicine
Lung cancer remains one of the most prevalent cancers globally and the leading cause of cancer-related deaths, accounting for nearly one-fifth of all cancer fatalities. Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography ([F]FDG...

Preoperative Maximum Standardized Uptake Value Emphasized in Explainable Machine Learning Model for Predicting the Risk of Recurrence in Resected Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: To comprehensively analyze the association between preoperative maximum standardized uptake value (SUV) on 18F-fluorodeoxyglucose positron emission tomography-computed tomography and postoperative recurrence in resected non-small cell lung c...

Artificial intelligence algorithm for preoperative prediction of FIGO stage in ovarian cancer based on clinical features integrated 18F-FDG PET/CT metabolic and radiomics features.

Journal of cancer research and clinical oncology
PURPOSE: The International Federation of Gynecology and Obstetric (FIGO) stage is critical to guiding the treatments of ovarian cancer (OC). We tried to develop a model to predict the FIGO stage of OC through machine learning algorithms with patients...

IRMA: Machine learning-based harmonization of F-FDG PET brain scans in multi-center studies.

European journal of nuclear medicine and molecular imaging
PURPOSE: Center-specific effects in PET brain scans arise due to differences in technical and procedural aspects. This restricts the merging of data between centers and introduces source-specific bias.

Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point F-FDG PET/CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment planning. This study aims to utilize convolutional neural networks based on dual-time-point F-FDG PET/CT to predict the malignant ris...

Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning.

BMC medical imaging
BACKGROUND: 18-Fluoro-deoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a valuable imaging tool widely used in the management of cancer patients. Deep learning models excel at segmenting highly metabolic tumors but face ch...

Reducing inference cost of Alzheimer's disease identification using an uncertainty-aware ensemble of uni-modal and multi-modal learners.

Scientific reports
While multi-modal deep learning approaches trained using magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG PET) data have shown promise in the accurate identification of Alzheimer's disease, their clinical appl...

Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning.

European journal of nuclear medicine and molecular imaging
PURPOSE: To address the challenges of verifying MR-based attenuation correction (MRAC) in PET/MR due to CT positional mismatches and alignment issues, this study utilized a flatbed insert and arms-down positioning during PET/CT scans to achieve preci...