AIMC Topic: Gastrointestinal Neoplasms

Clear Filters Showing 11 to 20 of 69 articles

Artificial intelligence in gastrointestinal cancers: Diagnostic, prognostic, and surgical strategies.

Cancer letters
GI (Gastrointestinal) malignancies are one of the most common and lethal cancers globally. The dawn of precision medicine and developing technologies have reduced the mortality rates for GI malignancies, underscoring the main role of early detection ...

Interpretable machine learning model based on CT semantic features and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors.

Scientific reports
To develop and validate a machine learning (ML) model which combined computed tomography (CT) semantic and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs) patients. We retrospectively collected...

Imatinib adherence prediction using machine learning approach in patients with gastrointestinal stromal tumor.

Cancer
BACKGROUND: Nonadherence to imatinib is common in patients with gastrointestinal stromal tumor (GIST), which is associated with poor prognosis and financial burden. The primary aim of this study was to investigate the adherence rate in patients with ...

Integrating Deep Learning-Based Dose Distribution Prediction with Bayesian Networks for Decision Support in Radiotherapy for Upper Gastrointestinal Cancer.

Cancer research and treatment
PURPOSE: Selecting the better techniques to harbor optimal motion management, either a stereotactic linear accelerator delivery using TrueBeam (TBX) or magnetic resonance-guided gated delivery using MRIdian (MRG), is time-consuming and costly. To add...

Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms.

Digestion
BACKGROUND: Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestina...

Effect of dexamethasone pretreatment using deep learning on the surgical effect of patients with gastrointestinal tumors.

PloS one
To explore the application efficacy and significance of deep learning in anesthesia management for gastrointestinal tumors (GITs) surgery, 80 elderly patients with GITs who underwent surgical intervention at our institution between January and Septem...

Interpretable artificial intelligence to optimise use of imatinib after resection in patients with localised gastrointestinal stromal tumours: an observational cohort study.

The Lancet. Oncology
BACKGROUND: Current guidelines recommend use of adjuvant imatinib therapy for many patients with gastrointestinal stromal tumours (GISTs); however, its optimal treatment duration is unknown and some patient groups do not benefit from the therapy. We ...

Deep learning analysis for differential diagnosis and risk classification of gastrointestinal tumors.

Scandinavian journal of gastroenterology
OBJECTIVES: Recently, artificial intelligence (AI) has been applied to clinical diagnosis. Although AI has already been developed for gastrointestinal (GI) tract endoscopy, few studies have applied AI to endoscopic ultrasound (EUS) images. In this st...

Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography.

Journal of clinical gastroenterology
BACKGROUND: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ...

Development of an ensemble CNN model with explainable AI for the classification of gastrointestinal cancer.

PloS one
The implementation of AI assisted cancer detection systems in clinical environments has faced numerous hurdles, mainly because of the restricted explainability of their elemental mechanisms, even though such detection systems have proven to be highly...