AIMC Topic: Genome, Human

Clear Filters Showing 41 to 50 of 196 articles

Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers.

PLoS computational biology
Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data a...

AI for the collective analysis of a massive number of genome sequences: various examples from the small genome of pandemic SARS-CoV-2 to the human genome.

Genes & genetic systems
In genetics and related fields, huge amounts of data, such as genome sequences, are accumulating, and the use of artificial intelligence (AI) suitable for big data analysis has become increasingly important. Unsupervised AI that can reveal novel know...

ReFeaFi: Genome-wide prediction of regulatory elements driving transcription initiation.

PLoS computational biology
Regulatory elements control gene expression through transcription initiation (promoters) and by enhancing transcription at distant regions (enhancers). Accurate identification of regulatory elements is fundamental for annotating genomes and understan...

NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks.

Genome biology
Long-read sequencing enables variant detection in genomic regions that are considered difficult-to-map by short-read sequencing. To fully exploit the benefits of longer reads, here we present a deep learning method NanoCaller, which detects SNPs usin...

Discovering differential genome sequence activity with interpretable and efficient deep learning.

PLoS computational biology
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Patt...

Prioritizing and characterizing functionally relevant genes across human tissues.

PLoS computational biology
Knowledge of genes that are critical to a tissue's function remains difficult to ascertain and presents a major bottleneck toward a mechanistic understanding of genotype-phenotype links. Here, we present the first machine learning model-FUGUE-combini...

Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning.

Scientific reports
Over the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. ...

Feasibility of predicting allele specific expression from DNA sequencing using machine learning.

Scientific reports
Allele specific expression (ASE) concerns divergent expression quantity of alternative alleles and is measured by RNA sequencing. Multiple studies show that ASE plays a role in hereditary diseases by modulating penetrance or phenotype severity. Howev...

Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance.

Nature communications
Resistance to ionizing radiation, a first-line therapy for many cancers, is a major clinical challenge. Personalized prediction of tumor radiosensitivity is not currently implemented clinically due to insufficient accuracy of existing machine learnin...