AIMC Topic: Glioma

Clear Filters Showing 51 to 60 of 359 articles

The Segment Anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
BACKGROUND: Promptable foundation auto-segmentation models like Segment Anything (SA, Meta AI, New York, USA) represent a novel class of universal deep learning auto-segmentation models that could be employed for interactive tumor auto-contouring in ...

Machine learning-based new classification for immune infiltration of gliomas.

PloS one
BACKGROUND: Glioma is a highly heterogeneous and poorly immunogenic malignant tumor, with limited efficacy of immunotherapy. The characteristics of the immunosuppressive tumor microenvironment (TME) are one of the important factors hindering the effe...

Artificial intelligence and omics in malignant gliomas.

Physiological genomics
Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemothe...

Development of a prognostic model related to homologous recombination deficiency in glioma based on multiple machine learning.

Frontiers in immunology
BACKGROUND: Despite advances in neuro-oncology, treatments of glioma and tools for predicting the outcome of patients remain limited. The objective of this research is to construct a prognostic model for glioma using the Homologous Recombination Defi...

Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: Magnetic resonance (MR)-guided radiation therapy enables online adaptation to address intra- and interfractional changes. To address the need of high-fidelity synthetic computed tomography (synCT) required for dose calculation, we developed ...

Integrating HRMAS-NMR Data and Machine Learning-Assisted Profiling of Metabolite Fluxes to Classify Low- and High-Grade Gliomas.

Interdisciplinary sciences, computational life sciences
Diagnosing and classifying central nervous system tumors such as gliomas or glioblastomas pose a significant challenge due to their aggressive and infiltrative nature. However, recent advancements in metabolomics and magnetic resonance spectroscopy (...

Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.

Computers in biology and medicine
OBJECTIVE: Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk.

Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients.

Scientific reports
Gliomas are the most common tumor in the central nervous system in adults, with glioblastoma (GBM) representing the most malignant form, while low-grade glioma (LGG) is a less severe. The prognosis for glioma remains poor even after various treatment...

Deep Learning and Habitat Radiomics for the Prediction of Glioma Pathology Using Multiparametric MRI: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pat...

Machine learning-based discovery of UPP1 as a key oncogene in tumorigenesis and immune escape in gliomas.

Frontiers in immunology
INTRODUCTION: Gliomas are the most common and aggressive type of primary brain tumor, with a poor prognosis despite current treatment approaches. Understanding the molecular mechanisms underlying glioma development and progression is critical for imp...