AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hematoma

Showing 1 to 10 of 48 articles

Clear Filters

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network.

Scientific reports
Hematoma expansion occasionally occurs in patients with intracerebral hemorrhage (ICH), associating with poor outcome. Multimodal neural networks incorporating convolutional neural network (CNN) analysis of images and neural network analysis of tabul...

Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Early prediction of hematoma expansion (HE) is important for the development of therapeutic strategies for spontaneous intracerebral hemorrhage (sICH). Radiomics can help to predict early hematoma expansion in intracerebral hemorrhage. Ho...

Phenotypes of Patients with Intracerebral Hemorrhage, Complications, and Outcomes.

Neurocritical care
BACKGROUND: The objective of this study was to define clinically meaningful phenotypes of intracerebral hemorrhage (ICH) using machine learning.

A Deep Learning-Based Framework for Predicting Intracerebral Hematoma Expansion Using Head Non-contrast CT Scan.

Academic radiology
RATIONALE AND OBJECTIVES: Hematoma expansion (HE) in intracerebral hemorrhage (ICH) is a critical factor affecting patient outcomes, yet effective clinical tools for predicting HE are currently lacking. We aim to develop a fully automated framework b...

Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%-38% of hemorrhagic stroke patients. I...

Development of machine learning prediction model for AKI after craniotomy and evacuation of hematoma in craniocerebral trauma.

Medicine
The aim of this study was to develop a machine-learning prediction model for AKI after craniotomy and evacuation of hematoma in craniocerebral trauma. We included patients who underwent craniotomy and evacuation of hematoma due to traumatic brain inj...

Prediction of prognosis in patients with cerebral contusions based on machine learning.

Scientific reports
Traumatic brain injury (TBI) is a global issue and a major cause of patient mortality, and cerebral contusions (CCs) is a common primary TBI. The haemorrhagic progression of a contusion (HPC) poses a significant risk to patients' lives, and effective...

Evaluation of Pregnancy Risks in Women with Subchorionic Hematoma Using Machine Learning Models.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND Subchorionic hematoma (SCH) can lead to blood accumulation and potentially affect pregnancy outcomes. Despite being a relatively common finding in early pregnancy, the effects of SCH on pregnancy outcomes such as miscarriage, stillbirth, a...

Using artificial intelligence-based software for an unbiased discrimination of immune cell subtypes in the fracture hematoma and bone marrow of non-osteoporotic and osteoporotic mice.

PloS one
It is well established that the early inflammatory response following fracture is essential for initiating subsequent bone regeneration. An imbalance in inflammation, whether within the innate or adaptive immune response, can result in impaired fract...

Utilizing Machine Learning Techniques to Predict Negative Remodeling in Uncomplicated Type B Intramural Hematoma.

Annals of vascular surgery
BACKGROUND: To evaluate the effectiveness of machine learning (ML) techniques in predicting negative remodeling in uncomplicated Stanford type B intramural hematoma (IMHB) during the acute phase.