AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Immunohistochemistry

Showing 11 to 20 of 154 articles

Clear Filters

A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma.

Pathologica
HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression ...

Immunohistochemistry-Free Enhanced Histopathology of the Rat Spleen Using Deep Learning.

Toxicologic pathology
Enhanced histopathology of the immune system uses a precise, compartment-specific, and semi-quantitative evaluation of lymphoid organs in toxicology studies. The assessment of lymphocyte populations in tissues is subject to sampling variability and l...

Identification of WDR74 and TNFRSF12A as biomarkers for early osteoarthritis using machine learning and immunohistochemistry.

Frontiers in immunology
BACKGROUND: Osteoarthritis (OA) is a chronic joint condition that causes pain, limited mobility, and reduced quality of life, posing a threat to healthy aging. Early detection is crucial for improving prognosis. Recent research has focused on the rol...

Tumor Cellularity Assessment Using Artificial Intelligence Trained on Immunohistochemistry-Restained Slides Improves Selection of Lung Adenocarcinoma Samples for Molecular Testing.

The American journal of pathology
Tumor cellularity (TC) in lung adenocarcinoma slides submitted for molecular testing is important in identifying actionable mutations, but lack of best practice guidelines results in high interobserver variability in TC assessments. An artificial int...

Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma.

PloS one
BACKGROUND: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochem...

OCDet: A comprehensive ovarian cell detection model with channel attention on immunohistochemical and morphological pathology images.

Computers in biology and medicine
BACKGROUND: Ovarian cancer is among the most lethal gynecologic malignancy that threatens women's lives. Pathological diagnosis is a key tool for early detection and diagnosis of ovarian cancer, guiding treatment strategies. The evaluation of various...

The tumour histopathology "glossary" for AI developers.

PLoS computational biology
The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective trans...

Leveraging Deep Learning for Immune Cell Quantification and Prognostic Evaluation in Radiotherapy-Treated Oropharyngeal Squamous Cell Carcinomas.

Laboratory investigation; a journal of technical methods and pathology
The tumor microenvironment plays a critical role in cancer progression and therapeutic responsiveness, with the tumor immune microenvironment (TIME) being a key modulator. In head and neck squamous cell carcinomas (HNSCCs), immune cell infiltration s...

Automatic image generation and stage prediction of breast cancer immunobiological through a proposed IHC-GAN model.

BMC medical imaging
Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their i...

Quantifying the tumour vasculature environment from CD-31 immunohistochemistry images of breast cancer using deep learning based semantic segmentation.

Breast cancer research : BCR
BACKGROUND: Tumour vascular density assessed from CD-31 immunohistochemistry (IHC) images has previously been shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time-consuming, suffer from high ...