AIMC Topic: Infant

Clear Filters Showing 171 to 180 of 947 articles

A new scoring in differential diagnosis: multisystem inflammatory syndrome or adenovirus infection?

Turkish journal of medical sciences
BACKGROUND/AIM: Differentiating multisystem inflammatory syndrome in children (MIS-C) from adenovirus infection (AI) can be challenging due to similar clinical and laboratory findings. This study aimed to identify distinguishing characteristics and d...

Video-audio neural network ensemble for comprehensive screening of autism spectrum disorder in young children.

PloS one
A timely diagnosis of autism is paramount to allow early therapeutic intervention in preschoolers. Deep Learning tools have been increasingly used to identify specific autistic symptoms. But they also offer opportunities for broad automated detection...

Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.

Computers in biology and medicine
OBJECTIVE: Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk.

Transfer learning-enabled outcome prediction for guiding CRRT treatment of the pediatric patients with sepsis.

BMC medical informatics and decision making
Continuous renal replacement therapy (CRRT) is a life-saving procedure for sepsis but the benefit of CRRT varies and prediction of clinical outcomes is valuable in efficient treatment planning. This study aimed to use machine learning (ML) models tra...

Computer Vision Identification of Trachomatous Inflammation-Follicular Using Deep Learning.

Cornea
PURPOSE: Trachoma surveys are used to estimate the prevalence of trachomatous inflammation-follicular (TF) to guide mass antibiotic distribution. These surveys currently rely on human graders, introducing a significant resource burden and potential f...

An integrated machine learning model enhances delayed graft function prediction in pediatric renal transplantation from deceased donors.

BMC medicine
BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both t...

Children Are Not Small Adults: Addressing Limited Generalizability of an Adult Deep Learning CT Organ Segmentation Model to the Pediatric Population.

Journal of imaging informatics in medicine
Deep learning (DL) tools developed on adult data sets may not generalize well to pediatric patients, posing potential safety risks. We evaluated the performance of TotalSegmentator, a state-of-the-art adult-trained CT organ segmentation model, on a s...

Artificial intelligence in paediatric head trauma: enhancing diagnostic accuracy for skull fractures and brain haemorrhages.

Neurosurgical review
Pediatric head trauma is a significant cause of morbidity and mortality, with children, particularly those under two years old, being more susceptible to skull fractures due to their unique physiological and developmental characteristics. A recent st...