AIMC Topic: Kidney Transplantation

Clear Filters Showing 31 to 40 of 192 articles

Ensemble of machine learning techniques to predict survival in kidney transplant recipients.

Computers in biology and medicine
Kidney transplant recipients face a high cardiovascular risk, which is a leading cause of death in this patient group. This article proposes the application of clustering techniques and feature selection to predict the survival outcomes of kidney tra...

APOD: A biomarker associated with oxidative stress in acute rejection of kidney transplants based on multiple machine learning algorithms and animal experimental validation.

Transplant immunology
BACKGROUND: Oxidative stress is an unavoidable process in kidney transplantation and is closely related to the development of acute rejection after kidney transplantation. This study aimed to investigate the biomarkers associated with oxidative stres...

Predicting graft and patient outcomes following kidney transplantation using interpretable machine learning models.

Scientific reports
The decision to accept a deceased donor organ offer for transplant, or wait for something potentially better in the future, can be challenging. Clinical decision support tools predicting transplant outcomes are lacking. This project uses interpretabl...

Prediction of post-donation renal function using machine learning techniques and conventional regression models in living kidney donors.

Journal of nephrology
BACKGROUND: Accurate prediction of renal function following kidney donation and careful selection of living donors are essential for living-kidney donation programs. We aimed to develop a prediction model for post-donation renal function following li...

Deep learning-enabled classification of kidney allograft rejection on whole slide histopathologic images.

Frontiers in immunology
BACKGROUND: Diagnosis of kidney transplant rejection currently relies on manual histopathological assessment, which is subjective and susceptible to inter-observer variability, leading to limited reproducibility. We aim to develop a deep learning sys...

Diagnosis and classification of kidney transplant rejection using machine learning-assisted surface-enhanced Raman spectroscopy using a single drop of serum.

Biosensors & bioelectronics
The quest to reduce kidney transplant rejection has emphasized the urgent requirement for the development of non-invasive, precise diagnostic technologies. These technologies aim to detect antibody-mediated rejection (ABMR) and T-cell-mediated reject...

First experiences with machine learning predictions of accelerated declining eGFR slope of living kidney donors 3 years after donation.

Journal of nephrology
BACKGROUND: Living kidney donors are screened pre-donation to estimate the risk of end-stage kidney disease (ESKD). We evaluate Machine Learning (ML) to predict the progression of kidney function deterioration over time using the estimated GFR (eGFR)...

Predicting kidney allograft survival with explainable machine learning.

Transplant immunology
INTRODUCTION: Despite significant progress over the last decades in the survival of kidney allografts, several risk factors remain contributing to worsening kidney function or even loss of transplants. We aimed to evaluate a new machine learning meth...

Cherry on Top or Real Need? A Review of Explainable Machine Learning in Kidney Transplantation.

Transplantation
Research on solid organ transplantation has taken advantage of the substantial acquisition of medical data and the use of artificial intelligence (AI) and machine learning (ML) to answer diagnostic, prognostic, and therapeutic questions for many year...