AIMC Topic: Life Style

Clear Filters Showing 1 to 10 of 78 articles

Development and Validation of a Lifestyle-Based 10-Year Risk Prediction Model of Colorectal Cancer for Early Stratification: Evidence from a Longitudinal Screening Cohort in China.

Nutrients
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, with growing evidence linking risk to lifestyle and dietary factors. However, nutrition-related exposures have rarely been integrated into existing CRC ...

Type 2 Diabetes in Taiwan: Unmasking Influential Factors Through Advanced Predictive Modeling.

Journal of diabetes research
Type 2 diabetes (T2D) is influenced by lifestyle, genetics, and environmental conditions. By utilizing machine learning techniques, we can enhance the precision of T2D risk prediction by analyzing the complex interactions among these variables. This...

Unraveling MASLD: The Role of Gut Microbiota, Dietary Modulation, and AI-Driven Lifestyle Interventions.

Nutrients
Gut microbiota has a crucial role in the pathophysiology of metabolic-associated steatotic liver disease (MASLD), influencing various metabolic mechanisms and contributing to the development of the disease. Dietary interventions targeting gut microbi...

Hybrid Neural network and machine learning models with improved optimization method for gut microbiome effects on the sleep quality in patients with endometriosis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Endometriosis is a chronic gynecological condition known to affect the quality of life of millions of women globally, often manifesting with symptoms that impact sleep quality. Emerging evidence suggests a crucial role of th...

Artificial intelligence models utilize lifestyle factors to predict dry eye related outcomes.

Scientific reports
The purpose of this study is to examine and interpret machine learning models that predict dry eye (DE)-related clinical signs, subjective symptoms, and clinician diagnoses by heavily weighting lifestyle factors in the predictions. Machine learning m...

Interpretable lung cancer risk prediction using ensemble learning and XAI based on lifestyle and demographic data.

Computational biology and chemistry
Lung cancer is a leading cause of cancer-related death worldwide. The early and accurate detection of lung cancer is crucial for improving patient outcomes. Traditional predictive models often lack the accuracy and interpretability required in clinic...

Capsule DenseNet++: Enhanced autism detection framework with deep learning and reinforcement learning-based lifestyle recommendation.

Computers in biology and medicine
Autism Spectrum Disorder (ASD) is a complex neurological condition that impairs the ability to interact, communicate, and behave. It is becoming increasingly prevalent worldwide, with an increase in the number of young children diagnosed with ASD in ...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

An artificial intelligence-informed proof of concept model for an ecological framework of healthy longevity forcing factors in the United States.

Current problems in cardiology
Unhealthy lifestyle behaviors are a doorway to downstream health consequences characterized by the following: 1) poor quality of life and diminished mobility; 2) increased likelihood of chronic disease risk factors and diagnoses; and, ultimately, 3) ...