AIMC Topic: Lipids

Clear Filters Showing 31 to 40 of 134 articles

Exploring molecular mechanisms underlying changes in lipid fingerprinting of salmon (Salmo salar) during air frying integrating machine learning-guided REIMS and lipidomics analysis.

Food chemistry
Lipid oxidation in air-fried seafood poses a risk to human health. However, the effect of a prooxidant environment on lipid oxidation in seafood at different air frying (AF) temperatures remains unknown. An integrated machine learning (ML) - guided R...

Optimized phenol degradation and lipid production by Rhodosporidium toruloides using response surface methodology and genetic algorithm-optimized artificial neural network.

Chemosphere
Oleaginous yeast can produce lipids while degrading phenol in wastewater treatment. In this study, a Plackett-Burman Design (PBD) was adopted to identify key factors of phenol degradation and lipid production using R toruloides 9564. While temperatur...

AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.

Nature communications
Ionizable lipid nanoparticles (LNPs) are seeing widespread use in mRNA delivery, notably in SARS-CoV-2 mRNA vaccines. However, the expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored for diverse cell types. In this ...

Using machine learning-based algorithms to construct cardiovascular risk prediction models for Taiwanese adults based on traditional and novel risk factors.

BMC medical informatics and decision making
OBJECTIVE: To develop and validate machine learning models for predicting coronary artery disease (CAD) within a Taiwanese cohort, with an emphasis on identifying significant predictors and comparing the performance of various models.

Lipids balance as a spectroscopy marker of diabetes. Analysis of FTIR spectra by 2D correlation and machine learning analyses.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The number of people suffering from type 2 diabetes has rapidly increased. Taking into account, that elevated intracellular lipid concentrations, as well as their metabolism, are correlated with diminished insulin sensitivity, in this study we would ...

Comparative Analysis of Chemical Descriptors by Machine Learning Reveals Atomistic Insights into Solute-Lipid Interactions.

Molecular pharmaceutics
This study explores the research area of drug solubility in lipid excipients, an area persistently complex despite recent advancements in understanding and predicting solubility based on molecular structure. To this end, this research investigated no...

Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry.

Nature materials
To unlock the full promise of messenger (mRNA) therapies, expanding the toolkit of lipid nanoparticles is paramount. However, a pivotal component of lipid nanoparticle development that remains a bottleneck is identifying new ionizable lipids. Here we...

Engineering mannose-functionalized nanostructured lipid carriers by sequential design using hybrid artificial intelligence tools.

Drug delivery and translational research
Nanostructured lipid carriers (NLCs) hold significant promise as drug delivery systems (DDS) owing to their small size and efficient drug-loading capabilities. Surface functionalization of NLCs can facilitate interaction with specific cell receptors,...

Towards quantifying biomarkers for respiratory distress in preterm infants: Machine learning on mid infrared spectroscopy of lipid mixtures.

Talanta
Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomark...

Cross-sectional angle prediction of lipid-rich and calcified tissue on computed tomography angiography images.

International journal of computer assisted radiology and surgery
PURPOSE: The assessment of vulnerable plaque characteristics and distribution is important to stratify cardiovascular risk in a patient. Computed tomography angiography (CTA) offers a promising alternative to invasive imaging but is limited by the fa...