AIMC Topic: Lung Neoplasms

Clear Filters Showing 1411 to 1420 of 1640 articles

Clinical utility of an artificial intelligence radiomics-based tool for risk stratification of pulmonary nodules.

JNCI cancer spectrum
BACKGROUND: Clinical utility data on pulmonary nodule (PN) risk stratification biomarkers are lacking. We aimed to determine the incremental predictive value and clinical utility of using an artificial intelligence (AI) radiomics-based computer-aided...

Validation of Non-Small Cell Lung Cancer Clinical Insights Using a Generalized Oncology Natural Language Processing Model.

JCO clinical cancer informatics
PURPOSE: Limited studies have used natural language processing (NLP) in the context of non-small cell lung cancer (NSCLC). This study aimed to validate the application of an NLP model to an NSCLC cohort by extracting NSCLC concepts from free-text med...

Automated Interstitial Lung Abnormality Probability Prediction at CT: A Stepwise Machine Learning Approach in the Boston Lung Cancer Study.

Radiology
Background It is increasingly recognized that interstitial lung abnormalities (ILAs) detected at CT have potential clinical implications, but automated identification of ILAs has not yet been fully established. Purpose To develop and test automated I...

Explainable machine learning prediction of edema adverse events in patients treated with tepotinib.

Clinical and translational science
Tepotinib is approved for the treatment of patients with non-small-cell lung cancer harboring MET exon 14 skipping alterations. While edema is the most prevalent adverse event (AE) and a known class effect of MET inhibitors including tepotinib, there...

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness.

Korean journal of radiology
OBJECTIVE: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone.

External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs.

Radiology. Artificial intelligence
Purpose To assess the prognostic value of a deep learning-based chest radiographic age (hereafter, CXR-Age) model in a large external test cohort of Asian individuals. Materials and Methods This single-center, retrospective study included chest radio...

Assessment of Follow-Up for Pulmonary Nodules from Radiology Reports with Natural Language Processing.

Studies in health technology and informatics
Radiology reports are an essential communication method for ensuring smooth workflow in healthcare. However, many of these reports are described in free text, and findings documented by radiologists may not be adequately addressed. In this study, foc...

Temporal Characterization and Visualization of Revolving Therapy-Events in Lung Cancer Patients.

Studies in health technology and informatics
This paper presents a comprehensive workflow for integrating revolving events into the transitive sequential pattern mining (tSPM+) algorithm and Machine Learning for Health Outcomes (MLHO) framework, emphasizing best practices and pitfalls in its ap...