Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is a complex, non-convex problem traditionally addressed with heuristic methods.This work demonstrates the potential improvement of the proposed BOO, providing a math...
Tumor immune microenvironment plays a crucial role in determining the prognosis of lung adenocarcinoma (LUAD), with the interaction of immune cells within this microenvironment contributing to a poorer prognosis. We sought to investigate the causal r...
BACKGROUND: Endobronchial ultrasound (EBUS) is a widely used imaging modality for evaluating thoracic lymph nodes (LNs), particularly in the staging of lung cancer. Artificial intelligence (AI)-assisted EBUS has emerged as a promising tool to enhance...
To propose a deep learning model and explore its performance in the auxiliary diagnosis of lung cancer associated with cystic airspaces (LCCA) in computed tomography (CT) images. This study is a retrospective analysis that incorporated a total of 342...
Lung adenocarcinoma (LUAD) is a major challenge in oncology due to its complex molecular structure and generally poor prognosis. The aim of this study was to find diagnostic markers and therapeutic targets for LUAD by integrating differential gene ex...
Exosomes are crucial in the development of non-small cell lung cancer (NSCLC), yet exosome-associated genes in NSCLC remain insufficiently explored. The present study identified 59 exosome-associated differentially expressed genes (EA-DEGs) from the ...
Lung cancer remains the leading cause of cancer-related mortality worldwide, necessitating accurate and efficient diagnostic tools to improve patient outcomes. Lung segmentation plays a pivotal role in the diagnostic pipeline, directly impacting the ...
Accurate Lung cancer (LC) identification is a big medical problem in the AI-based healthcare systems. Various deep learning-based methods have been proposed for Lung cancer diagnosis. In this study, we proposed a Deep learning techniques-based integr...
BACKGROUND: Preference-based measures of health-related quality of life (HRQoL), such as the Short Form Six-Dimension (SF-6D) is essential for health economic evaluations. However, these measures are rarely included in clinical trials for lung cancer...
RATIONALE AND OBJECTIVES: Lung cancer remains the leading cause of cancer-related mortality worldwide, emphasizing the critical need for early pulmonary nodule detection to improve patient outcomes. Current methods encounter challenges in detecting s...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.