AIMC Topic: Lymph Nodes

Clear Filters Showing 21 to 30 of 374 articles

Deep learning-based fully automated detection and segmentation of pelvic lymph nodes on diffusion-weighted images for prostate cancer: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurate identification and evaluation of lymph nodes (LNs) in prostate cancer (PCa) patients is crucial for effective staging but can be time-consuming. We utilized a 3D V-Net model to improve the efficiency and accuracy of LN detection ...

Prediction of peripheral lymph node metastasis (LNM) in thyroid cancer using delta radiomics derived from enhanced CT combined with multiple machine learning algorithms.

European journal of medical research
OBJECTIVES: This study aimed to develop a model for predicting peripheral lymph node metastasis (LNM) in thyroid cancer patients by combining enhanced CT radiomic features with machine learning algorithms. It increased the clinical utility and interp...

Prognostic model for log odds of negative lymph node in locally advanced rectal cancer via interpretable machine learning.

Scientific reports
No studies have examined the prognostic value of the log odds of negative lymph nodes/T stage (LONT) in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT). We aimed to assess the prognostic value of LONT and devel...

Prediction of Lymph Node Metastasis in Lung Cancer Using Deep Learning of Endobronchial Ultrasound Images With Size on CT and PET-CT Findings.

Respirology (Carlton, Vic.)
BACKGROUND AND OBJECTIVE: Echo features of lymph nodes (LNs) influence target selection during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). This study evaluates deep learning's diagnostic capabilities on EBUS images f...

Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model.

International journal of surgery (London, England)
OBJECTIVES: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providi...

Machine learning-driven ultrasound radiomics for assessing axillary lymph node burden in breast cancer.

Frontiers in endocrinology
OBJECTIVE: This study explores the value of combining intratumoral and peritumoral radiomics features from ultrasound imaging with clinical characteristics to assess axillary lymph node burden in breast cancer patients.

Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

Journal of clinical pathology
Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine a...

Artificial intelligence can extract important features for diagnosing axillary lymph node metastasis in early breast cancer using contrast-enhanced ultrasonography.

Scientific reports
Contrast-enhanced ultrasound (CEUS) plays a pivotal role in the diagnosis of primary breast cancer and in axillary lymph node (ALN) metastasis. However, the imaging features that are clinically crucial for lymph node metastasis have not been fully el...

Automatic cervical lymph nodes detection and segmentation in heterogeneous computed tomography images using deep transfer learning.

Scientific reports
To develop a deep learning model using transfer learning for automatic detection and segmentation of neck lymph nodes (LNs) in computed tomography (CT) images, the study included 11,013 annotated LNs with a short-axis diameter ≥ 3 mm from 626 head an...