OBJECTIVE: To develop and evaluate a intralesional and perilesional radiomics strategy based on different machine learning model to differentiate International Society of Urological Pathology (ISUP) grade > 2 group and ISUP ≤ 2 prostate cancers (PCa)...
OBJECTIVE: To develop a multi-modality machine learning-based radiomics model utilizing Magnetic Resonance Imaging (MRI), Ultrasound (US), and Mammography (MMG) for the differentiation of benign and malignant breast nodules.
Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are essential clinical cross-sectional imaging techniques for diagnosing complex conditions. However, large 3D datasets with annotations for deep learning are scarce. While methods like DI...
Brain tumours (BTs) are severe neurological disorders. They affect more than 308,000 people each year worldwide. The mortality rate is over 251,000 deaths annually (IARC, 2020 reports). Detecting BTs is complex because they vary in nature. Early diag...
This paper focuses on designing and developing novel architectures termed Hybrid Vision UNet-Encoder Decoder (HVU-ED) segmenter and Hybrid Vision UNet-Encoder (HVU-E) classifier for brain tumor segmentation and classification, respectively. The propo...
Deep neural networks (DNNs) excel at extracting insights from complex data across various fields, however, their application in cognitive neuroscience remains limited, largely due to the lack of approaches with interpretability. Here, we employ two d...
Do visual neural networks learn brain-aligned representations because they share architectural constraints and task objectives with biological vision or because they share universal features of natural image processing? We characterized the universal...
Dementia typically results from damage to neural pathways and the consequent degeneration of neuronal connections. Graph neural networks (GNNs) have been widely employed to model complex brain networks. However, leveraging the complementary temporal,...
Alzheimer's disease (AD) constitutes a neurodegenerative disorder predominantly observed in the geriatric population. If AD can be diagnosed early, both in terms of prevention and treatment, it is very beneficial to patients. Therefore, our team prop...
Correlation matrices serve as fundamental representations of functional brain networks in neuroimaging. Conventional analyses often treat pairwise interactions independently within Euclidean space, neglecting the underlying geometry of correlation st...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.