AIMC Topic: Malnutrition

Clear Filters Showing 21 to 30 of 43 articles

Malnutrition risk assessment using a machine learning-based screening tool: A multicentre retrospective cohort.

Journal of human nutrition and dietetics : the official journal of the British Dietetic Association
BACKGROUND: Malnutrition is associated with increased morbidity, mortality, and healthcare costs. Early detection is important for timely intervention. This paper assesses the ability of a machine learning screening tool (MUST-Plus) implemented in re...

Predicting malnutrition in gastric cancer patients using computed tomography(CT) deep learning features and clinical data.

Clinical nutrition (Edinburgh, Scotland)
OBJECTIVE: The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery...

Role of irisin and myostatin on sarcopenia in malnourished patients diagnosed with GLIM criteria.

Nutrition (Burbank, Los Angeles County, Calif.)
OBJECTIVES: Sarcopenia is characterized by the loss of muscle mass. Skeletal muscle can produce and secrete different molecules called myokines. Irisin and myostatin are antagonistic myokines, and to our knowledge, no studies of both myokines have be...

Predicting malnutrition from longitudinal patient trajectories with deep learning.

PloS one
Malnutrition is common, morbid, and often correctable, but subject to missed and delayed diagnosis. Better screening and prediction could improve clinical, functional, and economic outcomes. This study aimed to assess the predictability of malnutriti...

Automated food intake tracking requires depth-refined semantic segmentation to rectify visual-volume discordance in long-term care homes.

Scientific reports
Malnutrition is a multidomain problem affecting 54% of older adults in long-term care (LTC). Monitoring nutritional intake in LTC is laborious and subjective, limiting clinical inference capabilities. Recent advances in automatic image-based food est...

Evaluation of a Novel Artificial Intelligence System to Monitor and Assess Energy and Macronutrient Intake in Hospitalised Older Patients.

Nutrients
Malnutrition is common, especially among older, hospitalised patients, and is associated with higher mortality, longer hospitalisation stays, infections, and loss of muscle mass. It is therefore of utmost importance to employ a proper method for diet...

Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease.

Clinical nutrition (Edinburgh, Scotland)
BACKGROUND & AIMS: Malnutrition is persistent in 50%-75% of children with congenital heart disease (CHD) after surgery, and early prediction is crucial for nutritional intervention. The aim of this study was to develop and validate machine learning (...

A Machine Learning-Based Screening Test for Sarcopenic Dysphagia Using Image Recognition.

Nutrients
BACKGROUND: Sarcopenic dysphagia, a swallowing disorder caused by sarcopenia, is prevalent in older patients and can cause malnutrition and aspiration pneumonia. This study aimed to develop a simple screening test using image recognition with a low r...

Multivariate random forest prediction of poverty and malnutrition prevalence.

PloS one
Advances in remote sensing and machine learning enable increasingly accurate, inexpensive, and timely estimation of poverty and malnutrition indicators to guide development and humanitarian agencies' programming. However, state of the art models ofte...

Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools.

Clinical nutrition (Edinburgh, Scotland)
Early identification of patients at risk of malnutrition or who are malnourished is crucial in order to start a timely and adequate nutritional therapy. Yet, despite the presence of many nutrition screening tools for use in the hospital setting, ther...