This study aimed to develop and validate a combined nomogram model based on superb microvascular imaging (SMI)-based deep learning (DL), radiomics characteristics, and clinical factors for noninvasive differentiation between immunoglobulin A nephropa...
BACKGROUND AND AIMS: The high mortality rate and huge disease burden of coronary heart disease (CHD) highlight the importance of its early detection and timely intervention. Given the non-invasive nature of fundus photography and recent development i...
The analysis of the microvasculature and the assessment of angiogenesis have significant prognostic value in various diseases, including cancer. The search for invasion into the blood and lymphatic vessels and the assessment of angiogenesis are impor...
The blood-brain barrier (BBB) is a selective barrier that controls the transport between the blood and neural tissue features and maintains brain homeostasis to protect the central nervous system (CNS). models can be useful to understand the role of...
. Ultrasound localization microscopy (ULM) enables microvascular reconstruction by localizing microbubbles (MBs). Although ULM can obtain microvascular images that are beyond the ultimate resolution of the ultrasound (US) diffraction limit, it requir...
European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
38538504
INTRODUCTION: Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.
Liver international : official journal of the International Association for the Study of the Liver
38436551
BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI ...
PURPOSE: To investigate the value of a multimodal deep learning (MDL) model based on computed tomography (CT) and magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC).
Ultrasound localization microscopy (ULM) enables deep tissue microvascular imaging by localizing and tracking intravenously injected microbubbles circulating in the bloodstream. However, conventional localization techniques require spatially isolated...
Mesoscopic photoacoustic imaging (PAI) enables label-free visualization of vascular networks in tissues with high contrast and resolution. Segmenting these networks from 3D PAI data and interpreting their physiological and pathological significance i...