AIMC Topic: Microvessels

Clear Filters Showing 21 to 30 of 53 articles

A Microvascular Segmentation Network Based on Pyramidal Attention Mechanism.

Sensors (Basel, Switzerland)
The precise segmentation of retinal vasculature is crucial for the early screening of various eye diseases, such as diabetic retinopathy and hypertensive retinopathy. Given the complex and variable overall structure of retinal vessels and their delic...

Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy.

Nature communications
Ultrasound localization microscopy (ULM) enables deep tissue microvascular imaging by localizing and tracking intravenously injected microbubbles circulating in the bloodstream. However, conventional localization techniques require spatially isolated...

Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
INTRODUCTION: Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Multitask deep learning for prediction of microvascular invasion and recurrence-free survival in hepatocellular carcinoma based on MRI images.

Liver international : official journal of the International Association for the Study of the Liver
BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI ...

Predicting microvascular invasion in hepatocellular carcinoma with a CT- and MRI-based multimodal deep learning model.

Abdominal radiology (New York)
PURPOSE: To investigate the value of a multimodal deep learning (MDL) model based on computed tomography (CT) and magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Deep learning for fast super-resolution ultrasound microvessel imaging.

Physics in medicine and biology
. Ultrasound localization microscopy (ULM) enables microvascular reconstruction by localizing microbubbles (MBs). Although ULM can obtain microvascular images that are beyond the ultimate resolution of the ultrasound (US) diffraction limit, it requir...

Development of a novel combined nomogram model integrating deep learning radiomics to diagnose IgA nephropathy clinically.

Renal failure
This study aimed to develop and validate a combined nomogram model based on superb microvascular imaging (SMI)-based deep learning (DL), radiomics characteristics, and clinical factors for noninvasive differentiation between immunoglobulin A nephropa...

Artificial Intelligence Assists in the Detection of Blood Vessels in Whole Slide Images: Practical Benefits for Oncological Pathology.

Biomolecules
The analysis of the microvasculature and the assessment of angiogenesis have significant prognostic value in various diseases, including cancer. The search for invasion into the blood and lymphatic vessels and the assessment of angiogenesis are impor...

Rapid Quantification of Microvessels of Three-Dimensional Blood-Brain Barrier Model Using Optical Coherence Tomography and Deep Learning Algorithm.

Biosensors
The blood-brain barrier (BBB) is a selective barrier that controls the transport between the blood and neural tissue features and maintains brain homeostasis to protect the central nervous system (CNS). models can be useful to understand the role of...

Association of retinal microvascular density and complexity with incident coronary heart disease.

Atherosclerosis
BACKGROUND AND AIMS: The high mortality rate and huge disease burden of coronary heart disease (CHD) highlight the importance of its early detection and timely intervention. Given the non-invasive nature of fundus photography and recent development i...