BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous tumor characterized by diverse genetic and molecular alterations. Developing a multi-omics-based classification system for LUAD is urgently needed to advance biological understanding.
BACKGROUND: Breast cancer, characterized by its heterogeneity, is a leading cause of mortality among women. The study aims to develop a Machine Learning-Derived Liquid-Liquid Phase Separation (MDLS) model to enhance the prognostic accuracy and person...
The increasing availability of massive genetic sequencing data in the clinical setting has triggered the need for appropriate tools to help fully exploit the wealth of information these data possess. GFPrint™ is a proprietary streaming algorithm desi...
There is an increasing demand to boost photosynthesis in rice to increase yield potential. Chloroplasts are the site of photosynthesis, and increasing their number and size is a potential route to elevate photosynthetic activity. Notably, bundle shea...
Large-scale omics profiling has uncovered a vast array of somatic mutations and cancer-associated proteins, posing substantial challenges for their functional interpretation. Here we present a network-based approach centered on FunMap, a pan-cancer f...
Journal of cellular and molecular medicine
39656479
Lung adenocarcinoma (LUAD), the predominant form of non-small-cell lung cancer, is frequently complicated by acute respiratory distress syndrome (ARDS), which increases mortality risks. Investigating the prognostic implications of ARDS-related genes ...
BACKGROUND: Accurate detection of driver gene mutations is crucial for treatment planning and predicting prognosis for patients with lung cancer. Conventional genomic testing requires high-quality tissue samples and is time-consuming and resource-con...
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...
Mature B-cell neoplasms (MBNs) are clonal proliferative diseases encompassing over 40 subtypes. The WHO classification (morphology, immunology, cytogenetics and molecular biology) provides comprehensive diagnostic understandings. However, MBN subtypi...
We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data...