Technology in cancer research & treatment
39051517
To establish a model based on clinical and delta-radiomic features within ultrasound images using XGBoost machine learning to predict proliferation-associated nuclear antigen Ki-67 value ≥ 15% in TNM stage primary breast cancer (BC). Data were coll...
BACKGROUND: Machine learning classifiers are increasingly used to create predictive models for pathological complete response (pCR) in breast cancer after neoadjuvant therapy (NAT). Few studies have compared the effectiveness of different ML classifi...
INTRODUCTION: In this study, we aimed to evaluate the predictive value of circulating lymphocyte subsets and inflammatory indexes in response to neoadjuvant chemoradiotherapy (NCRT) in patients with rectal mucinous adenocarcinomas (MACs).
PURPOSE: Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for seria...
Journal of cancer research and clinical oncology
39001926
PURPOSE: Neoadjuvant chemoradiotherapy has been the standard practice for patients with locally advanced rectal cancer. However, the treatment response varies greatly among individuals, how to select the optimal candidates for neoadjuvant chemoradiot...
RATIONALE AND OBJECTIVES: This study aims to explore the feasibility of the deep learning radiomics nomogram (DLRN) for predicting tumor status and axillary lymph node metastasis (ALNM) after neoadjuvant chemotherapy (NAC) in patients with breast can...
BACKGROUND: Chemotherapy enhances survival rates for pancreatic cancer (PC) patients postsurgery, yet less than 60% complete adjuvant therapy, with a smaller fraction undergoing neoadjuvant treatment. Our study aimed to predict which patients would c...
PURPOSE: In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise meth...
We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enro...
OBJECTIVES: Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy...