AIMC Topic: Neoadjuvant Therapy

Clear Filters Showing 51 to 60 of 207 articles

Artificial Intelligence-based Segmentation of Residual Pancreatic Cancer in Resection Specimens Following Neoadjuvant Treatment (ISGPP-2): International Improvement and Validation Study.

The American journal of surgical pathology
Neoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quant...

A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma.

Frontiers in immunology
BACKGROUND: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced comput...

Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-s...

Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients.

Abdominal radiology (New York)
PURPOSE: Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) patients.

Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.

International journal of colorectal disease
PURPOSE: This study aimed to assess tumor regression grade (TRG) in patients with rectal cancer after neoadjuvant chemoradiotherapy (NCRT) through a machine learning-based radiomics analysis using baseline T2-weighted magnetic resonance (MR) images.

Predicting response to neoadjuvant chemotherapy for colorectal liver metastasis using deep learning on prechemotherapy cross-sectional imaging.

Journal of surgical oncology
BACKGROUND AND OBJECTIVES: Deep learning models (DLMs) are applied across domains of health sciences to generate meaningful predictions. DLMs make use of neural networks to generate predictions from discrete data inputs. This study employs DLM on pre...

Assessing Endoscopic Response in Locally Advanced Rectal Cancer Treated with Total Neoadjuvant Therapy: Development and Validation of a Highly Accurate Convolutional Neural Network.

Annals of surgical oncology
BACKGROUND: Rectal tumors display varying degrees of response to total neoadjuvant therapy (TNT). We evaluated the performance of a convolutional neural network (CNN) in interpreting endoscopic images of either a non-complete response to TNT or local...