AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nerve Net

Showing 21 to 30 of 507 articles

Clear Filters

mGNN-bw: Multi-Scale Graph Neural Network Based on Biased Random Walk Path Aggregation for ASD Diagnosis.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
In recent years, computationally assisted diagnosis for classifying autism spectrum disorder (ASD) and typically developing (TD) individuals based on neuroimaging data, such as functional magnetic resonance imaging (fMRI), has garnered significant at...

Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods...

Optimizing functional brain network analysis by incorporating nonlinear factors and frequency band selection with machine learning models.

Medicine
The accurate assessment of the brain's functional network is seen as crucial for the understanding of complex relationships between different brain regions. Hidden information within different frequency bands, which is often overlooked by traditional...

Multi-feature fusion method combining brain functional connectivity and graph theory for schizophrenia classification and neuroimaging markers screening.

Journal of psychiatric research
BACKGROUND: The abnormalities in brain functional connectivity (FC) and graph topology (GT) in patients with schizophrenia (SZ) are unclear. Researchers proposed machine learning algorithms by combining FC or GT to identify SZ from healthy controls. ...

An accurate and fast learning approach in the biologically spiking neural network.

Scientific reports
Computations adapted from the interactions of neurons in the nervous system have the potential to be a strong foundation for building computers with cognitive functions including decision-making, generalization, and real-time learning. In this contex...

Heterogeneous Graph Representation Learning Framework for Resting-State Functional Connectivity Analysis.

IEEE transactions on medical imaging
Brain functional connectivity analysis is important for understanding brain development and brain disorders. Recent studies have suggested that the variations of functional connectivity among multiple subnetworks are closely related to the developmen...

Spiking Neuron-Astrocyte Networks for Image Recognition.

Neural computation
From biological and artificial network perspectives, researchers have started acknowledging astrocytes as computational units mediating neural processes. Here, we propose a novel biologically inspired neuron-astrocyte network model for image recognit...

Learning in Wilson-Cowan Model for Metapopulation.

Neural computation
The Wilson-Cowan model for metapopulation, a neural mass network model, treats different subcortical regions of the brain as connected nodes, with connections representing various types of structural, functional, or effective neuronal connectivity be...

Active Inference and Intentional Behavior.

Neural computation
Recent advances in theoretical biology suggest that key definitions of basal cognition and sentient behavior may arise as emergent properties of in vitro cell cultures and neuronal networks. Such neuronal networks reorganize activity to demonstrate s...

Deep learning models as learners for EEG-based functional brain networks.

Journal of neural engineering
Functional brain network (FBN) methods are commonly integrated with deep learning (DL) models for EEG analysis. Typically, an FBN is constructed to extract features from EEG data, which are then fed into a DL model for further analysis. Beyond this t...