AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neuroimaging

Showing 51 to 60 of 806 articles

Clear Filters

UK Biobank MRI data can power the development of generalizable brain clocks: A study of standard ML/DL methodologies and performance analysis on external databases.

NeuroImage
In this study, we present a comprehensive pipeline to train and compare a broad spectrum of machine learning and deep learning brain clocks, integrating diverse preprocessing strategies and correction terms. Our analysis also includes established met...

Contrastive learning in brain imaging.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Contrastive learning is a type of deep learning technique trying to classify data or examples without requiring data labeling. Instead, it learns about the most representative features that contrast positive and negative pairs of examples. In literat...

An unsupervised learning approach for clustering joint trajectories of Alzheimer's disease biomarkers: An application to ADNI Data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Current models of Alzheimer's disease (AD) progression assume a common pattern and pathology, oversimplifying the heterogeneity of clinical AD.

Deep self-representation learning with hyper-laplacian regularization for brain imaging genetics association analysis.

Methods (San Diego, Calif.)
Brain imaging genetics aims to explore the association between genetic factors such as single nucleotide polymorphisms (SNPs) and brain imaging quantitative traits (QTs). However, most existing methods do not consider the nonlinear correlations betwe...

Adapting to evolving MRI data: A transfer learning approach for Alzheimer's disease prediction.

NeuroImage
Integrating 3D magnetic resonance imaging (MRI) with machine learning has shown promising results in healthcare, especially in detecting Alzheimer's Disease (AD). However, changes in MRI technologies and acquisition protocols often yield limited data...

Multi-center brain age prediction via dual-modality fusion convolutional network.

Medical image analysis
Accurate prediction of brain age is crucial for identifying deviations between typical individual brain development trajectories and neuropsychiatric disease progression. Although current research has made progress, the effective application of brain...

DeepPrep: an accelerated, scalable and robust pipeline for neuroimaging preprocessing empowered by deep learning.

Nature methods
Neuroimaging has entered the era of big data. However, the advancement of preprocessing pipelines falls behind the rapid expansion of data volume, causing substantial computational challenges. Here we present DeepPrep, a pipeline empowered by deep le...

Detection of Alzheimer Disease in Neuroimages Using Vision Transformers: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Alzheimer disease (AD) is a progressive condition characterized by cognitive decline and memory loss. Vision transformers (ViTs) are emerging as promising deep learning models in medical imaging, with potential applications in the detecti...

Radiomics in glioma: emerging trends and challenges.

Annals of clinical and translational neurology
Radiomics is a promising neuroimaging technique for extracting and analyzing quantitative glioma features. This review discusses the application, emerging trends, and challenges associated with using radiomics in glioma. Integrating deep learning alg...

Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging.

NeuroImage
INTRODUCTION: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer, which can be mapped non-invasively by Magnetic Resonance Spectroscopic Imaging (MRSI). Advanced MRSI using non-cartesian comp...