RATIONALE AND OBJECTIVES: Secondary vertebral compression fractures (SVCF) are very common in patients after vertebral augmentation (VA). The aim of this study was to establish a radiomic-based model to predict SVCF and specify appropriate treatment ...
Develop a radiomics nomogram that integrates deep learning, radiomics, and clinical variables to predict epidermal growth factor receptor (EGFR) mutation status in patients with stage I non-small cell lung cancer (NSCLC). We retrospectively included ...
PURPOSE: This study was designed to develop and validate a machine learning-based, multimodality fusion (MMF) model using F-fluorodeoxyglucose (FDG) PET/CT radiomics and kernelled support tensor machine (KSTM), integrated with clinical factors and nu...
BACKGROUND AND AIMS: The recurrence of papillary thyroid carcinoma (PTC) is not unusual and associated with risk of death. This study is aimed to construct a nomogram that combines clinicopathological characteristics and ultrasound radiomics signatur...
OBJECTIVES: Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) anal...
OBJECTIVE: Infertility remains a significant global burden over the years. Reproductive surgery is an effective strategy for infertile women. Early prediction of spontaneous pregnancy after reproductive surgery is of high interest for the patients se...
AIM: To develop a decision-support tool for predicting extubation failure (EF) in neonates with bronchopulmonary dysplasia (BPD) using a set of machine-learning algorithms.
OBJECTIVE: The clinical manifestations of systemic sclerosis (SSc) are highly variable, resulting in varied outcomes and complications. Diverse fibrosis of the skin and internal organs, vasculopathy, and dysregulated immune system lead to poor and va...
RATIONALE AND OBJECTIVES: Early identification for hematoma expansion can help improve patient outcomes. Presently, there are many methods to predict hematoma expansion. This study compared a variety of models to find a model suitable for clinical pr...
International journal of colorectal disease
Jun 26, 2024
BACKGROUND: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox reg...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.