AIMC Topic: Observer Variation

Clear Filters Showing 21 to 30 of 312 articles

Reliable and easy-to-use calculating tool for the Nail Psoriasis Severity Index using deep learning.

NPJ systems biology and applications
Since nail psoriasis restricts the patient's daily activities, therapeutic intervention based on reliable and reproducible evaluation is critical. The Nail Psoriasis Severity Index (NAPSI) is a validated scoring tool, but its usefulness is limited by...

Inter- and intra-rater reliability of cognitive assessment conducted by assistive robot for older adults living in the community: a preliminary study.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: The purpose of this study was to reveal inter- and intra-rater reliability of the detailed evaluation of cognitive function by assistive robot for older adults.

A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers.

Magnetic resonance imaging
BACKGROUND: The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening rout...

Comparing Human-Level and Machine Learning Model Performance in White Blood Cell Morphology Assessment.

European journal of haematology
INTRODUCTION: There is an increasing research focus on the role of machine learning in the haematology laboratory, particularly in blood cell morphologic assessment. Human-level performance is an important baseline and goal for machine learning. This...

An open-source fine-tuned large language model for radiological impression generation: a multi-reader performance study.

BMC medical imaging
BACKGROUND: The impression section integrates key findings of a radiology report but can be subjective and variable. We sought to fine-tune and evaluate an open-source Large Language Model (LLM) in automatically generating impressions from the remain...

Deep-learning model accurately classifies multi-label lung ultrasound findings, enhancing diagnostic accuracy and inter-reader agreement.

Scientific reports
Despite the increasing use of lung ultrasound (LUS) in the evaluation of respiratory disease, operators' competence constrains its effectiveness. We developed a deep-learning (DL) model for multi-label classification using LUS and validated its perfo...

Advancements in opportunistic intracranial aneurysm screening: The impact of a deep learning algorithm on radiologists' analysis of T2-weighted cranial MRI.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
(1) Background: Unruptured Intracranial Aneurysms (UIAs) are common blood vessel malformations, occurring in up to 3 % of healthy adults. Magnetic Resonance Angiography (MRA) is frequently used for the screening of UIAs due to its high resolution in ...

Classification of cervical vertebral maturation stages with machine learning models: leveraging datasets with high inter- and intra-observer agreement.

Progress in orthodontics
OBJECTIVES: This study aimed to assess the accuracy of machine learning (ML) models with feature selection technique in classifying cervical vertebral maturation stages (CVMS). Consensus-based datasets were used for models training and evaluation for...

Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.